Math 3201 Test

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Match the following graph with its function.

A. $y=-\frac{1}{3} \ln x$
B. $y=3 \log x$
C. $y=-\frac{1}{3}(3)^{x}$
D. $y=0.3(10)^{x}$
2. Which exponential equation correctly represents the logarithmic equation $y=\log 50$?
A. $50^{y}=10$
B. $10^{y}=50$
C. $y^{50}=10$
D. $y^{10}=50$
3. Which logarithmic equation correctly represents the exponential equation $10^{7}=x$?
A. $x=\log 7$
B. $x=\log 10$
C. $7=\log x$
D. $10=\log x$
4. Calculate the pH of a solution with a hydrogen ion concentration of $6.5 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$. Recall that $\mathrm{pH}, p(x)$, is defined by the equation $p(x)=-\log x$ where the concentration of hydrogen ions, x, in a solution is measured in moles per litre.
A. 6.5
B. -5.2
C. -6.5
D. 5.2
5. Which expression is equivalent to $\ln \left(\frac{8}{5}\right)$?
A. $\ln 8-\ln 5$
B. $\ln 5-\ln 8$
C. $8 \ln 5$
D. $\ln 0.625$
6. Evaluate:
$\log _{12} 16+2 \log _{12} 3$
A. -4
B. 4
C. 2
D. 0
7. Evaluate:
$3 \log _{8} 24-3 \log _{8} 3$
A. 3
B. 7
C. 1
D. 64
8. Which logarithmic expression is not equivalent to the others?
A. $\frac{\log 6}{\log \left(\frac{1}{4}\right)}$
B. $\log _{10} 1.5$
C. $\frac{\log 6}{2 \log 0.5}$
D.
9. The equation of the logarithmic function that models a data set is $y=43.9-8.7 \ln x$. Extrapolate the value of y when $x=120$.
A. $y=1.2$
B. $y=2.2$
C. $y=3.2$
D. $y=4.2$
10. A scatter plot is drawn using a data set. Identify the equation of the curve of best fit.

A. $y=8.5+\log x$
B. $y=8.5+\ln x$
C. $y=8.5 \log x$
D. $y=8.5 \ln x$

Short Answer: Answer the following in the space provided.

1. Solve each equation. Round your answers to three decimal places.
a) $5^{x+3}=450$
b) $4^{x+3}=6^{x-1}$
2. Evaluate the following using the laws of logarithms:
a. $3 \log _{6}(2)+\log _{6}(27)$
b. $\log _{5}(2.5)+2 \log _{5}(10)-\log _{5}(2)$
3. Evaluate: $\log _{7} 100$
4. $\$ 1600$ is invested at 3% per year, compounded monthly. In which year after the initial investment, will the investment reach $\$ 2000$? Use the compound interest formula:
$A=P(1+i)^{n}$
Show your work.
5. A laboratory that uses radioactive substances received a shipment of 122 g of bismuth-210. Only 6.64 g of the bismuth-210 remained 21.0 days later. Determine the half-life of bismuth-210 algebraically using logarithms, to the nearest tenth of a day. The half-life equation is $A=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}}$
where A represents the amount of the substance remaining, A_{0} represents the initial amount of the substance, t represents the time, and h represents the time at which only half of the substance remains.

MULTIPLE CHOICE

1. ANS: A PTS: 1 DIF: Grade 12 REF: Lesson 7.1

OBJ: 4.1 Express a logarithmic equation as an exponential equation and vice versa. |6.1 Describe, orally and in written form, the characteristics of an exponential or logarithmic function by analyzing its graph. | 6.2 Describe, orally and in written form, the characteristics of an exponential or logarithmic function by analyzing its their equation. 6.3 Match equations in a given set to their corresponding graphs.
TOP: Characteristics of logarithmic functions with base 10 and base e
KEY: logarithmic function
2. ANS: B PTS: 1 DIF: Grade 12 REF: Lesson 7.1

OBJ: 4.1 Express a logarithmic equation as an exponential equation and vice versa. |6.1 Describe, orally and in written form, the characteristics of an exponential or logarithmic function by analyzing its graph. | 6.2 Describe, orally and in written form, the characteristics of an exponential or logarithmic function by analyzing its their equation. |6.3 Match equations in a given set to their corresponding graphs.
TOP: Characteristics of logarithmic functions with base 10 and base e
KEY: logarithmic function | exponential function
3. ANS: C PTS: 1 DIF: Grade 12 REF: Lesson 7.1

OBJ: 4.1 Express a logarithmic equation as an exponential equation and vice versa. |6.1 Describe, orally and in written form, the characteristics of an exponential or logarithmic function by analyzing its graph. | 6.2 Describe, orally and in written form, the characteristics of an exponential or logarithmic function by analyzing its their equation. 6.3 Match equations in a given set to their corresponding graphs.
TOP: Characteristics of logarithmic functions with base 10 and base e
KEY: logarithmic function | exponential function
4. ANS: D PTS: 1 DIF: Grade 12 REF: Lesson 7.2

OBJ: 4.1 Express a logarithmic equation as an exponential equation and vice versa. |4.2
Determine the value of a logarithmic expression, such as log_2 8, without technology. | 4.5
Determine the approximate value of a logarithmic expression, such as $\log _29$, with technology.
TOP: Evaluating logarithmic expressions KEY: logarithmic function
5. ANS: A PTS: 1 DIF: Grade 12 REF: Lesson 7.3

OBJ: 4.3 Develop the laws of logarithms, using numeric examples and the exponent laws.|4.4
Determine an equivalent expression for a logarithmic expression by applying the Solving exponential equations using logarithms. TOP: Laws of logarithms
KEY: logarithmic function
6. ANS: C PTS: 1 DIF: Grade 12 REF: Lesson 7.3

OBJ: 4.3 Develop the laws of logarithms, using numeric examples and the exponent laws.|4.4
Determine an equivalent expression for a logarithmic expression by applying the Solving exponential equations using logarithms. TOP: Laws of logarithms
KEY: logarithmic function
7. ANS: A PTS: 1 DIF: Grade 12 REF: Lesson 7.3

OBJ: 4.3 Develop the laws of logarithms, using numeric examples and the exponent laws.|4.4 Determine an equivalent expression for a logarithmic expression by applying the Solving exponential equations using logarithms. TOP: Laws of logarithms
KEY: logarithmic function
8. ANS: B PTS: 1 DIF: Grade 12 REF: Lesson 7.4

OBJ: 5.2 Determine the solution of an exponential equation in which the bases are not powers of one another. | 5.3 Solve problems that involve the application of exponential equations to loans, mortgages and investments.
TOP: Solving exponential equations using logarithms KEY: logarithmic function
9. ANS: B PTS: 1 DIF: Grade 12 REF: Lesson 7.5

OBJ: 6.4 Graph data and determine the exponential or logarithmic function that best approximates the data. 6.5 Interpret the graph of an exponential or logarithmic function that models a situation, and explain the reasoning. 6.6 Solve, using technology, a contextual problem that involves data that is best represented by graphs of exponential or logarithmic functions, and explain the reasoning. TOP: Modelling data using logarithmic functions KEY: logarithmic function | regression function | extrapolate
10. ANS: C PTS: 1 DIF: Grade 12 REF: Lesson 7.5

OBJ: 6.4 Graph data and determine the exponential or logarithmic function that best approximates the data. |6.5 Interpret the graph of an exponential or logarithmic function that models a situation, and explain the reasoning. | 6.6 Solve, using technology, a contextual problem that involves data that is best represented by graphs of exponential or logarithmic functions, and explain the reasoning.

TOP: Modelling data using logarithmic functions
KEY: logarithmic function | regression function | curve of best fit

SHORT ANSWER

1. ANS:

3

PTS: 1 DIF: Grade 12 REF: Lesson 7.2
OBJ: 4.1 Express a logarithmic equation as an exponential equation and vice versa. |4.2
Determine the value of a logarithmic expression, such as log_2 8, without technology. | 4.5
Determine the approximate value of a logarithmic expression, such as $\log _{2} 29$, with technology.
TOP: Evaluating logarithmic expressions KEY: logarithmic function
2. ANS:
$x=2.367$
PTS: 1 DIF: Grade 12 REF: Lesson 7.4
OBJ: 5.2 Determine the solution of an exponential equation in which the bases are not powers of one another. | 5.3 Solve problems that involve the application of exponential equations to loans, mortgages and investments.
TOP: Solving exponential equations using logarithms
KEY: logarithmic function

PROBLEM

1. ANS:

Use the compound interest formula with $P=1600$ and $i=\frac{0.03}{12}$ or 0.0025 .
$A=1600(1+0.0025)^{n}$
$A=1600(1.0025)^{n}$
Solve for n when $A=2000$:

$$
\begin{aligned}
2000 & =1600(1.0025)^{n} \\
\frac{2000}{1600} & =(1.0025)^{n} \\
\log \left(\frac{2000}{1600}\right) & =\log (1.0025)^{n} \\
\log (1.25) & =n \log (1.0025) \\
\frac{\log (1.25)}{\log (1.0025)} & =n \\
n & =89.368 \ldots
\end{aligned}
$$

Convert the number of months to years:
$\frac{89.368 \ldots}{12}=7.447 \ldots$
In the eighth year after the initial investment, the investment will reach $\$ 2000$.
PTS: 1 DIF: Grade 12 REF: Lesson 7.4
OBJ: 5.2 Determine the solution of an exponential equation in which the bases are not powers of one another. | 5.3 Solve problems that involve the application of exponential equations to loans, mortgages and investments.
TOP: Solving exponential equations using logarithms KEY: logarithmic function
2. ANS:

Use the half-life equation with $A_{0}=122, A=6.64$, and $t=21.0$.

$$
\begin{aligned}
A & =A_{0}\left(\frac{1}{2}\right)^{\frac{t}{k}} \\
6.64 & =122\left(\frac{1}{2}\right)^{\frac{210}{k}}
\end{aligned}
$$

Solve for h :

$$
\begin{aligned}
6.64 & =122\left(\frac{1}{2}\right)^{\frac{210}{h}} \\
\frac{6.64}{122} & =\left(\frac{1}{2}\right)^{\frac{210}{h}} \\
\log \left(\frac{6.64}{122}\right) & =\log \left(\frac{1}{2}\right)^{\frac{21.0}{h}} \\
\log \left(\frac{6.64}{122}\right) & =\frac{21.0}{h} \log \left(\frac{1}{2}\right) \\
h & =\frac{21.0 \log \left(\frac{1}{2}\right)}{\log \left(\frac{6.64}{122}\right)} \\
h & =5.000 \ldots
\end{aligned}
$$

The half-life of bismuth-210 is 5.0 days.
PTS: 1 DIF: Grade 12 REF: Lesson 7.4
OBJ: 5.2 Determine the solution of an exponential equation in which the bases are not powers of one another. | 5.3 Solve problems that involve the application of exponential equations to loans, mortgages and investments.
TOP: Solving exponential equations using logarithms
KEY: logarithmic function | half-life

