Unit VII
 Exponential Functions

Suggested Time

12 hours $=12 \%$

In Mathematics 1201, students worked with linear relations expressed in slope-intercept form, general form and slope-point form (RF6). In Mathematics 2201, they solved problems that involved quadratic equations (RF2). Students will now be exposed to exponential equations of the form $y=a(b)^{x}$, where $b>1$ or $0<b<1$ and $a>0$. Work with logarithmic functions will be completed in the next unit.

Exponential function: any function of the form

$$
y=a \bullet(c)^{x} \text { Where } \mathrm{a}>0, \mathrm{c}>0, \mathrm{c} \neq 1
$$

Case 1: $\mathrm{c}>1$ (Exponential Increasing Curve or Exponential Growth Curve)

As x increases y increases without bound ex) Sketch the curves
i) $y=6(4)^{x}$
ii) $y=4^{x}$
iii) $y=2^{x}$
for a table of values for $x=-3$ to 3

x	$y=6(4)^{x}$	$y=4^{x}$	$y=2^{x}$
-3			
-2			
-1			
0			
1	94		
2	384		
3			
4			

End Behaviour:
all graphs increase without bound as x gets larger (increasing curves----rises to the right as x increases) these are known as exponential GROWTH curves $\mathrm{C}>1$)
asymptote: the horizontal line an exponential curve does not touch. Here it is the x-axis for all three cases. The equation of the asymptote is $\mathrm{y}=0$. This means the graph will never hit $\mathrm{y}=$ 0 .
These curves are all growth curves and the larger the value of C the faster the growth rate. These curves are all exponential growth curves...increasing curves.

Domain: $\{x / x \in R\}$
Range: Affected by the Horizontal asymptote $[\mathrm{y}=0] \mathrm{y}>0$

Case II $0<\mathrm{c}<1$ (Decay curves : as x increases y is decreasing forever)

$$
y=a(c)^{x}
$$

ex) Sketch the exponential functions for
$y=\left(\frac{1}{2}\right)^{x}, y=\left(\frac{1}{4}\right)^{x}, y=6\left(\frac{1}{4}\right)^{x}$

X	$y=\left(\frac{1}{2}\right)^{x}$	$y=\left(\frac{1}{4}\right)^{x}$	$y=6\left(\frac{1}{4}\right)^{x}$
-3	8		
-2	4		
-1	2		
0	1		
1	.5		
2	.25		
3	.125		
4	.0625		

End Behaviour: decreasing curves as x increases y is decreasing Asymptote: $\mathrm{y}=0$ (Horizontal Line the graphs do not touch or cross)

Domain: $\{x / x \in R\}$ Range $\{y / y>0, y \in R\}$

Fill in the information for the exponential curves below:

	$y=2^{x}$	$y=3^{x}$	$y=5(3)^{x}$
y-intercept			
number of x-intercepts			
end behaviour			
domain			
range			

	$y=\left(\frac{1}{2}\right)^{x}$	$y=\left(\frac{1}{4}\right)^{x}$	$y=3\left(\frac{1}{4}\right)^{x}$
y-intercept			
number of x-intercepts			
end behaviour			
domain			
range			

Summary: $\quad y=a \bullet(b)^{x}$

1) if $\mathrm{b}>1$ exponential growth (increasing curve)
2) $(0, a)=y$-intercept
3) if $0<b<1$, exponential decay curve (decreasing curve)
4) $\mathrm{HA}: \mathrm{y}=0$
5) if $b<0$ graph oscillates back and forth between points
6) if $\mathrm{b}=1, y=a \bullet(b)^{x}$ its just the horizontal line $\mathrm{y}=\mathrm{a}$

Transformations of Exponential Functions 7-2
https://www.desmos.com/calculator
$y=2^{x}, \quad y=2^{x}-4, \quad y=2^{x}+4$

1) Vertical Translations: $y=c^{x} \pm k$
ex) Sketch: On CALC
Summary: 1) all exponential growth curves
2) all translated vertically by " k " units
3) Horizontal Asymptote: $y=k$
4) Domain: $x \in(-\infty, \infty)$ Range:

$$
y>0, y>-4, y>4
$$

Sketch: $y=\left(\frac{1}{2}\right)^{x} \quad y=\left(\frac{1}{2}\right)^{x}-3 \quad y=\left(\frac{1}{2}\right)^{x}+2$

1) all exponential decreasing curves
2) same as $2,3,4$
3) Horizontal Translations: $y=c^{x \pm h}$

Sketch: $y=2^{x+2} \quad y=2^{x-2} \quad y=2^{x}$

Summary:

1) $y=c^{x+c}$ moves $y=c^{x}$
c units \qquad
2) $y=c^{x-c}$ moves $y=c^{x}$ c units
3) domain: Range: $y>0$
4) asymptote: $y=0$
5) Vertical Stretch $y=a(c)^{x}$

Stretches:

$$
y=3^{x} \quad y=2 \cdot 3^{x} \quad y=.5 \cdot 3^{x}
$$

Summary: 1) vertical stretch $=|a|$
2) domain and range not affected $(-\infty, \infty) \quad Y>0$
3) y-intercept $=(0, a)$
4) asymptote: $y=0$
4) Horizontal Stretch: $y=c^{b x}$
$y=2^{x} \quad y=2^{3 x}, \quad y=2^{\frac{x}{3}}, \quad y=5^{x} \quad y=5^{2 x} \quad y=5^{0.2 x}$
$c=2$
$b=1$
Summary:

1) Horizontal stretch $=1 / \mathrm{b}$

Reflections with Exponential Functions 7-2 Continued

1) $y=-c^{x}$
the -ve coefficient will cause the output values (y) to turn negative...hence the reflection will occur in the x -axis whether it is a growth or decay curve

Consider $y=2^{x} \quad y=-2^{x}, y=\left(\frac{1}{3}\right)^{x}, y=-\left(\frac{1}{3}\right)^{x}, y=-4^{x}$
$(2,4) \rightarrow(2,-4)$
$(1,1 / 3) \rightarrow(1,-1 / 3)$

Note: we ARE NOT CONSIDERING: $y=(-2)^{x}$

Summary: Changes Range, y-intercept, and shape in comparison to original

11

2)

$$
y=c^{-x}
$$

Consider: $\quad y=2^{x} \quad y=2^{-x}=\left(\frac{1}{2^{x}}\right)=\left(\frac{1}{2}\right)^{x}$
causes the input values to switch sign therefore reflection will be in the y-axis $(2,4) \rightarrow(-2,4)$

Summary: 1) causes reflection in the y-axis
2) domain $x \in R$
3) range $y>0$
4) asymptote: $y=0$ prerequisite

7-2 Combining effects of all Transformations of Exponential Functions

$$
y=a(c)^{b(x-h)}+k
$$

1) $a=v s$
2) $c=$ base (growth or decay)
3) $1 / b=H S$
4) $\mathrm{h}=$ horizontal translation
5) $k=v e r t i c a l ~ t r a n s l a t i o n ~$

Graphing Transformation of Exponential Functions (Combining All Transformations)

Ex) Determine the domain, range, equation of the horizontal asymptote, where the reflection is, base exponential function, mapping rule for:
(State a,b,c,h,k)
(i) $y=-\frac{1}{3}(2)^{x+3}-1$
(ii) $y=2(3)^{-\frac{1}{2}(x-2)}+5$
(iii)

$$
y=3\left(\frac{1}{2}\right)^{\frac{(x-2)}{4}}+8
$$

(i) $y=-2\left(\frac{1}{2}\right)^{3(x-1)}+4$
(ii) $y=\frac{1}{2}(3)^{-x+2}-4$
ii)

iii)

Page 354 1, 2, 3,4

7-3 Solving Exponential Equations (variable is in the exponent)

Method Systematic Trial:

Ex) Solve for x :

$$
2^{x}=10 \quad \text { Since } 2^{3}=8 \quad 2^{4}=16
$$

Solution is in between 3 and 4

Test value for x	Power	Approximate value
3.3	$2^{3.3}$	9.849
3.4	$2^{3.4}$	10.556
The value obtained for $2^{3.3}$ be is closer to 10 , so the next estimate should 3.3 than to 3.4 3.31$\quad 2^{3.31}$		
3.32	$2^{3.32}$	9.918
3.33	$2^{3.33}$	9.987

They should reason that the best estimate is $x \doteq 3.32$ because 9.987 is closer to 10 than 10.056 is.

Method 2 Algebraically DOPublic
Ex) Solve for x algebraically where appropriate:
(i) $\quad 9^{2 x+1}=81$
(ii) $16^{2 x+1}=\left(\frac{1}{2}\right)^{x-3}$
(iii) $40=4^{2 x+3}$
(i) $\left(\frac{1}{3}\right)^{2 x-1}=(81)^{3-x}$
(ii) $5\left(\frac{1}{4}\right)^{x}=80$
(iii) $\sqrt{5}=25^{x-1}$
(iv) $27^{2 x-1}=\sqrt[3]{3}$
(v) $\sqrt[5]{8^{x-1}}=\sqrt[3]{16^{x}}$
(vi) $\sqrt{3^{x}}=9^{2 x+1}$

Method III Graphically

Ex) Solve for $\mathrm{x}: 1.7^{x}=30$

7-3 Applications of Exponential Functions

Exponential Growth:
Model: $\quad y=A_{\circ}(c)^{x}$
$A_{0}=$ initial amount $\mathrm{C}=1+\mathrm{r}=1+$ growth rate
Ex)
Shelly initially invests $\$ 500$ and the value of the investment increases by 4% annually.

- Create a function to model the situation.
- How much money is in Shelly's investment after 30 years?
- What amount of time will it take for the investment to double?

Ex) A house is purchased for $\$ 155,000$ and is appreciating at a rate of 2% per year. What will the house be worth in 10 years? How long would it take for the house to double its value?

Model:
in 10 yrs :
Double original value:35 yrs use table on calc

Exponential Growth Cted!
Incremental periods other than 1 year. (It means x goes up by more than 1)

Doubling time $\quad y=A_{0}(2)^{\frac{t}{d}}$
$A_{0}=$ initial amount $\quad \mathrm{t}=$ any time $\mathrm{t} \mathrm{d}=$ doubling time

Ex) A bacterial culture doubles in size every 12 hours. If there are 200 bacteria initially present, determine how many will be present 2 days from now.
B) Algebraically, determine how long it would take in days for the culture to reach a population of 819,200 ?
C) $6,553,600$

Ex) After 54 hours, a bacteria culture of 15 cells has 120 cells present. Using an exponential model, determine the doubling time of the bacteria.

Other Incremental periods. Model:
$y=A_{0}(b)^{\frac{t}{c}} A_{0}=$ initial amount, $\mathrm{c}=$ when the object is incrementing

Ex) A trout population will quadruple in size every 8 years. If 1600 trout were initially present, determine algebraically how long it will take the population to reach 409,600.

Ex) A Wayne Gretzky rookie card increases in value 2\% every third year. Recently, a card sold for $\$ 94,613$ at auction. Determine the value of the card 12 years from now.

Ex) Determine an exponential growth function for the data below:
A)

x	0	1	2	3
y	5	6.25	7.8125	

B)

x	-1	0	1	2
y	2	4	8	16

C)

x	0	3	6	9
y	40	60	90	135

Exponential Decay

Model: $\quad y=A_{0}(b)^{x}$
$A_{0}=$ initial amount $\quad \mathrm{b}=1-\mathrm{r}$ (1 minus the growth rate)

Ex) A car depreciates 20\% every year. The purchase price was $\$ 26,000$. Determine the value of the car after 6 years. How long will it take for the car to be worth half of its value?

Applications of Exponential Functions Cted.
Half-life: how long it takes for a radioactive substance to decay to half of its original amount

IE: C14 has a half life of 5730 years. This means if there are 50 mg of C14 present, then it take 5730 years for 50 mg to decay to $25 \mathrm{mg} . . .11,460$ years for 50 mg to decay down to 12.5 mg

The half-life of Radon 222 is 92 hours. From an initial sample of 48 g , how long would it take to decay to 6 g ?

Model: $\quad y=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}}$

Half-Life continued April , 2019
The half-life of a certain radioactive isotope is 30 hours. Ask students to algebraically determine the amount of time it takes for a sample of 1792 mg to decay to 56 mg .
$y=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}}$
$56=1792(.5)^{(t / 30)}$
$1 / 32=.5^{(t / 30)}$
$2^{-5}=\left(2^{-1}\right)^{(t / 30)}$
$2^{-5}=2^{-(t / 30)}$
$-5=-t / 30$ therefore $t=5 \times 30=150$ hours

Ex) A radioactive element is decaying from 160 mg to 20 mg in 24 hours. Compute the half life of the element.

Model: $A=160\left(\frac{1}{2}\right)^{\frac{t}{h}}$ therefore $20=160\left(\frac{1}{2}\right)^{\frac{24}{h}}, \frac{1}{8}=\left(\frac{1}{2}\right)^{\frac{24}{h}}$

Further Applications
If an amount is growing exponentially at certain increments then models similar to doubling time and half-life have to be used.
Page 364:

0	1	to 4 assigned $5,9,10,11,12$		
7	21	6	3	4

Model: $y=7(3)^{x}$

0	5	10	15	20
7	21	63	189	567

Model: $y=7(3)^{\frac{x}{5}}$

0	6	12	18	24
$80^{\circ} \mathrm{C}$	$80 \times .7=56$	39.2	27.44	19.2

A cup of hot chocolate is served at an initial temperature of $80^{\circ} \mathrm{C}$ and then allowed to cool in a stadium with an air temperature of $5^{\circ} \mathrm{C}$. The difference between the hot chocolate temperature and the temperature of the room will decrease by 30% every 6 minutes. If T represents the temperature of the hot chocolate in degrees Celsius, measured as a function of time, t, in minutes, students can answer the following questions:

- What is the transformed exponential function in the form

$$
\mathrm{T}=a(c)^{b(t-\mathrm{h})}+k ?
$$

Table:

0	6	12	18	24
80	56	39.2	27.44	19.208

Since the room is 5 degrees it will cool to this temperature therefore this is the asymptote

$$
T=80(.70)^{\frac{t}{6}}+5
$$

- What is the temperature at time $t=11$ minutes?
- How long does it take the hot chocolate to cool to a temperature of $40^{\circ} \mathrm{C}$?

Print Page on e from Guide for Students
Financial Applications (New for this course)
Compound Interest: Earning interest on interest paid every period.

Compounding Periods are (Could be):
Yearly
semi-annually
Monthly $\quad 12$ times
Semi-Monthly 24 times a year
Bi-weekly vs 26 times
Weekly 52
Daily 365

Tyrell has $\$ 3000$ to invest. The JB Bank offers to pay 7% per year compounded semi-annually for three years. The TH Bank offers 6% per year compounded monthly for three years. Ask students to:
(i) Write functions to model each bank's offer.
(ii) Use the functions to determine which bank will give Tyrell the maximum return on his investment.

Model:
 Model:

Ask students to choose between two investment options and justify their choice: earning 12% interest per year compounded annually or 12% interest per year compounded monthly.

Use a $\$ 10,000$ investment for 5 years. Model Model

Determine how long $\$ 1100$ needs to be invested in an account that earns 7% compounded semi-annually before it increases in value to $\$ 1500$.

The Number "e"

The number \mathbf{e} is a famous irrational number, and is one of the most important numbers in mathematics.

The first few digits are:
2.7182818284590452353602874713527 (and more ...)

It is often called Euler's number after Leonhard Euler (pronounced "Oiler").
\mathbf{e} is the base of the Natural Logarithms (invented by John Napier).

There are many ways of calculating the value of \mathbf{e}, but none of them ever give a totally exact answer, because \mathbf{e} is irrational (not the ratio of two integers).

But it is known to over 1 trillion digits of accuracy!
For example, the value of $(1+1 / n)^{n}$ approaches \mathbf{e} as n gets bigger and bigger:

n	$(1+1 / \mathrm{n})^{\mathrm{n}}$
1	2.00000
2	2.25000
5	2.48832
10	2.59374
100	2.70481
1,000	2.71692
10,000	2.71815
100,000	2.71827

Another Calculation

The value of e is also equal to $\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+\frac{1}{7!}+\ldots$ (etc)
(Note: "!" means factorial)
The first few terms add up to: $1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}=2.718055556$

- Ask students to evaluate:
(i) π^{2}
(ii) e^{2}
(iii) $2 e$
- Ask students to estimate a solution to the following equations using benchmarks:
(i) $e^{x}=200$
(ii) $e^{x+1}=1000$
(RF9.2, RF9.3)
- Ask students to sketch the graph of $y=e^{x}$, identify the y-intercept, state the equation of the horizontal asymptote, and state the domain and range.

> (RF8.1, RF8.2)

- Ask students to graph $y=2^{x}, y=e^{x}$, and $y=3^{x}$ using graphing technology. Ask students to compare the domains, ranges, y - intercepts and equations of the horizontal asymptotes of the graphs.
(RF8.1, RF8.2)

End

