Formula: $A = A_o (1+r)^n$

Part 1: Multiple Choice

Complete each multiple choice item and place your answer on the Answer Sheet provided. (15 marks)

- 1. Solve for x: $8^{3x-2} + 7 = 39$
 - A) $-\frac{1}{9}$
 - B) $\frac{11}{6}$
 - C) $\frac{1}{9}$
 - D) $\frac{11}{9}$
- 2. Which graph represents the graph of $y = ac^{bx}$ given that a > 0, 0 < c < 1 and b < 0.

- 3. Which transformations occur when the graph of $y = (3)^x$ is transformed to $y = (3)^{-x+2}$?
 - A) Horizontal reflection in y-axis and horizontal translation 2 units to the left
 - B) Horizontal reflection in y-axis and horizontal translation 2 units to the right
 - C) Vertical reflection in x-axis and horizontal translation 2 units to the left
 - D) Vertical reflection in x-axis and horizontal translation 2 units to the right
- 4. Which equation results when the mapping rule $(x,y) \rightarrow \left(-3x-1, \frac{1}{4}y-2\right)$ is applied to $y=5^x$?

A)
$$y = \frac{1}{4} (5)^{-\frac{1}{3}(x+1)} - 2$$

B)
$$y = 4(5)^{-3(x+1)} + 2$$

C)
$$y = \frac{1}{4}(5)^{-\frac{1}{3}(x-1)} - 2$$

D)
$$y = 4(5)^{-3(x-1)} + 2$$

- 5. What is the y-intercept of the function $y = -2(3)^{2(x+1)} 4$?
 - A) -22
 - B) -6
 - C) 14
 - D) 32
- 6. A radioactive element decays exponentially with a half-life of 5 hours. How much time is required for a 64 mg sample to decay to 4 mg?
 - A) -20
 - B) 0.8
 - C) 1.25
 - D) 20

Which graph represents $y = \log_c x$, where 0 < c < 1? 7.

B)

D)

What is the logarithmic form of $\left(\sqrt[a]{b}\right)^c = d$? 8.

A)
$$\log_b \left(\frac{c}{a}\right) = d$$

B)
$$\log_b(a) = \frac{c}{a}$$

C)
$$\log_d \left(\frac{c}{a}\right) = b$$

D)
$$\log_d(b) = \frac{c}{a}$$

- 9. What is the inverse of $y = 6^x$?
 - A) $x = \log_y 6$
 - B) $x = \log_6 y$
 - C) $y = \log_x 6$
 - D) $y = \log_6 x$
- 10. What is the equation of the asymptote on the graph of the function $y = 4\log_2(2x+8)-3$?
 - A) x = -8
 - B) x = -4
 - C) y = -3
 - D) y = 4
- 11. Solve for x: $\log_5(2x) + \log_5(x-4) = \log_5 24$.
 - A) $\{-6, 2\}$
 - B) {2}
 - C) {6}
 - D) $\{-2, 6\}$
- 12. Which is $2\log_3 A + \frac{1}{2}\log_3 B \frac{1}{3}\log_3 C$ expressed as a single logarithm?
 - A) $\log_3\left(\frac{A^2 + \sqrt{B}}{\sqrt[3]{C}}\right)$
 - B) $\log_3\left(A^2 + \sqrt{B} \sqrt[3]{C}\right)$
 - C) $\log_3\left(A^2\sqrt{B} \sqrt[3]{C}\right)$
 - $D) \qquad \log_3\left(\frac{A^2\sqrt{B}}{\sqrt[3]{C}}\right)$

- 13. If $M = \log_2(5)$ and $N = \log_2(3)$, what is $\log_2\left(\frac{25}{27}\right)$ in terms of M and N?
 - A) 2M + 3N
 - B) 2M-3N
 - C) $M^2 + N^3$
 - D) $M^2 N^3$
- 14. In which step does the first error occur when solving for x in the equation $10^x + 5 = 60$?

STEP 1:
$$\log(10^x + 5) = \log(60)$$

STEP 2:
$$\log(10^x) + \log(5) = \log(60)$$

STEP 3:
$$x\log(10) = \log(60) - \log(5)$$

STEP 4:
$$x = \frac{\log(60) - \log(5)}{\log(10)}$$

- A) Step 1
- B) Step 2
- C) Step 3
- D) Step 4
- The magnitude of an earthquake, M, as measured on the Richter scale is given by $M = \log I$, where I is the intensity of the earthquake. The magnitude of the earthquake in Haiti measured 7 on the Richter scale and the magnitude of the earthquake in Chernobyl measured 4 on the Richter scale. How many times as intense was the earthquake in Haiti as compared to the one in Chernobyl?
 - A) 1.75
 - B) 3
 - C) 300
 - D) 1000

Name: _____ Mark: ____

Part I: ANSWER SHEET

- 1. _____ 2. ____ 3. ____ 4. ____ 5. ____
- 6. _____ 7. ____ 8. ____ 9. ____ 10. ____
- 11. _____ 12. ____ 13. ____ 14. ____ 15. ____

Part II: CONSTRUCTED RESPONSE

Complete each item in the space provided. Read each question carefully and provide all necessary details as part of your solution. (15 marks)

- 1. Algebraically solve each equation for x:
 - A) $\sqrt[5]{8^{x-1}} = \sqrt[3]{16^x}$ (3 marks)

1. B)
$$2^{x+4} \cdot \left(\frac{1}{4}\right)^{x-1} = 3$$
 (3 marks)

C)
$$\log_8(x^2+4x-8) - \log_8(x-1) = 1$$
 (3 marks)

2. Matthew invests \$800 into an educational fund that accumulates 8% interest per year, compounded annually. Tegan invests \$1000 into an educational fund that earns 6% per year, compounded annually. Set up two equations and algebraically determine when both investments will be equal. (6 marks)