## review unit 4

## Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Identify the index of $\sqrt[3]{2^{7}}$.
a. $2^{7}$
b. 3
c. 7
d. 2
2. Evaluate $\sqrt[4]{16}$.
a. 2
b. 2.6
c. 16
d. 1.41
$\qquad$ 3. Evaluate $\sqrt[3]{-64}$.
a. -4
b. impossible
c. -12.8
d. 4
$\qquad$ 4. Evaluate $\sqrt[3]{0.343}$.
a. 0.7
b. 0.007
c. 0.1143
d. 0.49
3. Evaluate $\sqrt[4]{\frac{256}{625}}$.
a. $\frac{4}{5}$
b. $\frac{4}{25}$
c. $\frac{16}{25}$
d. $\frac{16}{5}$
$\qquad$ 6. Write an equivalent form of 9 as a cube root.
a. $\sqrt[3]{6561}$
b. $\sqrt[3]{729}$
c. $\sqrt[3]{9 \sqrt{81}}$
d. $\sqrt{81}$
4. Which of these numbers is rational?
$\sqrt{\frac{4}{169}}, \sqrt{48}, \sqrt[3]{-16}, \sqrt{8.1}$
a. $\sqrt{48}$
b. $\sqrt{8.1}$
c. $\sqrt[3]{-16}$
d. $\sqrt{\frac{4}{169}}$
5. Which of these numbers is irrational?
$\sqrt{48}, \sqrt[3]{216}, \sqrt{\frac{49}{16}},-68$
a. -68
b. $\sqrt{48}$
c. $\sqrt[3]{216}$
d. $\sqrt{\frac{49}{16}}$
6. Order these numbers from greatest to least: $\sqrt[3]{99}, \sqrt{170}, \sqrt[3]{3050}, \sqrt{18}, \sqrt[3]{51}$
a. $\sqrt{170}, \sqrt[3]{99}, \sqrt[3]{3050}, \sqrt{18}, \sqrt[3]{51}$
b. $\sqrt[3]{3050}, \sqrt{18}, \sqrt[3]{51}, \sqrt{170}, \sqrt[3]{99}$
c. $\sqrt[3]{3050}, \sqrt{170}, \sqrt[3]{99}, \sqrt{18}, \sqrt[3]{51}$
d. $\sqrt[3]{3050}, \sqrt{170}, \sqrt{18}, \sqrt[3]{51}, \sqrt[3]{99}$
7. For which number will the fourth root be rational?

256, 27, -81, 40000
a. 40000
b. -81
c. 27
d. 256
$\qquad$ 11. Which of these numbers is an integer, but not a whole number?
$-9,0,1, \sqrt{5}$
a. 0
b. -9
c. $\sqrt{5}$
d. 1
12. Which of these numbers is a natural number?
$9,0,-1,1 . \overline{8}$
a. 9
b. 0
c. $1 . \overline{8}$
d. -1
13. The area of a square is 64 square inches. What do you know about the square?
a. Both its side length and its perimeter are irrational.
b. Its side length is irrational and its perimeter is rational.
c. Its side length is rational and its perimeter is irrational.
d. Both its side length and its perimeter are rational.
14. To which set(s) of numbers does $-\sqrt{25}$ belong?

| I | Natural |
| :--- | :--- |
| II | Integer |
| III | Rational |
| IV | Irrational |

a. II and III only
b. III only
c. I, II and III only
d. IV only
15. Write $\sqrt{108}$ in simplest form.
a. $3 \sqrt{12}$
b. $6 \sqrt{ } 3$
c. $36 \sqrt{3}$
d. $3 \sqrt{6}$
16. Write $\sqrt[3]{80}$ in simplest form.
a. $10 \sqrt[3]{2}$
b. $2 \sqrt[3]{10}$
c. $8 \sqrt[3]{10}$
d. $4 \sqrt[3]{5}$
17. Write $\sqrt[4]{405}$ in simplest form.
a. $3 \sqrt[4]{5}$
b. $81 \sqrt[4]{5}$
c. $9 \sqrt[4]{5}$
d. $5 \sqrt[4]{3}$
18. Write $6 \sqrt{ } 5$ as an entire radical.
a. $\sqrt{30}$
b. $\sqrt{150}$
c. $\sqrt{180}$
d. $\sqrt{900}$
19. Write $3 \sqrt[3]{4}$ as an entire radical.
a. $\sqrt[3]{108}$
b. $\sqrt[3]{144}$
c. $\sqrt[3]{36}$
d. $\sqrt[3]{192}$
20. Write $3 \sqrt[4]{2}$ as an entire radical.
a. $\sqrt[4]{48}$
b. $\sqrt[4]{18}$
c. $\sqrt[4]{162}$
d. $\sqrt[4]{36}$
21. Write $\sqrt{98}$ in simplest form.
a. $7 \sqrt{14}$
b. $7 \sqrt{ } 2$
c. $2 \sqrt{7}$
d. $49 \sqrt{2}$
22. Write $\sqrt[3]{1372}$ in simplest form.
a. $7 \sqrt[3]{28}$
b. $4 \sqrt[3]{7}$
c. $14 \sqrt[3]{7}$
d. $7 \sqrt[3]{4}$
23. Write $\sqrt[4]{160}$ in simplest form.
a. $2 \sqrt[4]{10}$
b. $4 \sqrt[4]{10}$
c. $10 \sqrt[4]{2}$
d. $2 \sqrt[4]{20}$
24. Write $4 \sqrt[5]{12}$ as an entire radical.
a. $\sqrt[5]{192}$
b. $\sqrt[5]{2304}$
c. $\sqrt[5]{995328}$
d. $\sqrt[5]{12288}$
25. Evaluate $64^{\frac{1}{3}}$ without using a calculator.
a. 8
b. 4
c. -4
d. $21 \frac{1}{3}$
26. Evaluate $(-27)^{\frac{1}{3}}$ without using a calculator.
a. -3
b. 3
c. -9
d. does not exist
27. Evaluate $\left(\frac{256}{625}\right)^{\frac{1}{4}}$ without using a calculator.
a. $\frac{64}{625}$
b. $\frac{4}{25}$
c. $\frac{4}{5}$
d. $\frac{16}{25}$
28. Write $42^{\frac{5}{4}}$ as a radical.
a. $\sqrt[5]{42^{4}}$
b. $(\sqrt[4]{42})^{5}$
c. $\sqrt[125]{42}$
d. $(\sqrt[5]{42})^{4}$
_ 29. Write $\sqrt{\left(\frac{3}{4}\right)^{9}}$ as a power.
a. $\left(\frac{3}{4}\right)^{-\frac{9}{2}}$
b. $\left(\frac{3}{4}\right)^{\frac{9}{2}}$
c. $\left(\frac{4}{3}\right)^{-\frac{2}{9}}$
d. $\left(\frac{3}{4}\right)^{\frac{2}{9}}$
30. Evaluate $0.16^{\frac{5}{2}}$.
a. 0.4804
b. 0.1012
c. 0.0256
d. 0.01024
31. Evaluate $(-243)^{0.6}$.
a. -27
c. 27
b. does not exist
d. $9462.5994 \ldots$
32. Biologists use the formula $b=0.01 m^{\frac{2}{3}}$ to estimate the brain mass, $b$ kilograms, of a mammal with body mass $m$ kilograms. Estimate the brain mass of a mammal with body mass 276 kg .
a. About 4.24 kg
c. About 9.13 kg
b. About 0.42 kg
d. About 253.92 kg
33. A cube has volume 1200 cubic inches. Write the edge length of the cube as a power.
a. $\sqrt[3]{1200}$ in.
b. $1200^{\frac{1}{3}} \mathrm{in}$.
c. $1200^{3} \mathrm{in}$.
d. $1200^{-3} \mathrm{in}$.
34. Evaluate $4^{25}$.
a. 18
b. 32
c. 1.741101 ...
d. 40
35. Evaluate $3^{-2}$ without using a calculator.
a. $\sqrt{ } 3$
b. 1
c. 1
d. 9
36. Evaluate $\left(\frac{2}{3}\right)^{-3}$.
a. $-\frac{27}{8}$
b. $-\frac{8}{27}$
c. $\frac{27}{8}$
d. $-\frac{1}{6}$
37. Evaluate $64^{-\frac{4}{3}}$ without using a calculator.
a. 1
b. 3
256
c. $\begin{gathered}1 \\ { }_{2} \\ 256\end{gathered}$
d. -256
38. Evaluate $\left(\frac{625}{256}\right)^{-\frac{3}{4}}$ without using a calculator.
a. $-\frac{64}{125}$
b. $\frac{125}{64}$
c. $-\frac{125}{64}$
d. $\frac{64}{125}$
39. Evaluate $(-216)^{-\frac{1}{3}}$ without using a calculator.
a. 1
36
b. 1
6
c. $\begin{gathered}1 \\ - \\ -36\end{gathered}$
d. $-\frac{1}{6}$
40. Evaluate (0.81) $)^{-\frac{3}{2}}$ without using a calculator.
a. $\frac{81}{100}$
b. $\frac{729}{1000}$
c. $\frac{100}{81}$
d. $\frac{1000}{729}$
41. Evaluate (0.64) $)^{-\frac{1}{2}}$ without using a calculator.
a. $\frac{4}{5}$
b. $-\frac{4}{5}$
c. $\frac{1}{4}$
d. $\frac{5}{4}$
42. Evaluate $49^{-0.5}$ without using a calculator.
a. $\frac{2}{49}$
b. $\frac{1}{49}$
c. $\frac{1}{7}$
d. 7
43. Which power with a negative exponent is equivalent to $\frac{1}{125}$ ?
a. $5^{-3}$
b. $-5^{-3}$
c. $3^{-5}$
d. $(-5)^{3}$
44. Which power with a negative exponent is equivalent to $\frac{125}{512}$ ?
a. $\left(\frac{8}{5}\right)^{-3}$
b. $\left(\frac{5}{8}\right)^{-2}$
c. $\left(\frac{8}{5}\right)^{-2}$
d. $\left(\frac{5}{8}\right)^{-3}$
45. Given that $6^{10}=60466176$, what is $6^{-10}$ ?
a. -6
b. $-\frac{1}{6}$
c. $-\frac{1}{60466176}$
d. $\frac{1}{60466176}$
46. Suppose you want $\$ 2000$ in 3 years. The interest rate for a savings account is $2.8 \%$ compounded annually.

The money, $P$ dollars, you must invest now is given by the formula $P=2000(1.028)^{-3}$. How much must you invest now to have $\$ 2000$ in 3 years?
a. $\quad \$ 1845.02$
b. $\$ 2172.75$
c. $\$ 1840.99$
d. $\$ 1836.58$
$\qquad$ 47. Simplify $\frac{\left(3.5^{-6}\right)\left(3.5^{5}\right)}{3.5^{-1}}$ by writing as a single power.
a. $3.5^{0}$
b. $3.5^{-29}$
c. $3.5^{0}$
d. $3.5^{-2}$
48. Simplify $m^{-2} n^{6} \cdot m^{3} n^{-8}$. Write using powers with positive exponents.
a. $m n^{2}$
b. $\frac{m}{n^{2}}$
c. $\frac{n^{14}}{m^{5}}$
d. $\frac{n^{2}}{m}$
49. Simplify $\frac{12 p^{3} q^{-7}}{15 p q^{6}}$. Write using powers with positive exponents.
a. $\frac{4 p^{3}}{5 q^{13}}$
b. $\frac{p^{2}}{3 q^{13}}$
c. $\frac{4 p^{2}}{5 q}$
d. $\frac{4 p^{2}}{5 q^{13}}$
50. Simplify $\left(64 a^{12} b^{15}\right)^{\frac{2}{3}}$.
a. $16 a^{8} b^{10}$
b. $16 a^{18} b^{10}$
c. $64 a^{8} b^{10}$
d. $16 a^{8} b^{25}$

- 51. Simplify $\left(\frac{36 x^{4} y^{3}}{4 x^{8} y^{-1}}\right)^{\frac{1}{2}}$.
a. $3 x^{2} y^{2}$
b. $\frac{3 y^{2}}{x^{2}}$
c. $\frac{3 y}{x^{2}}$
d. $\frac{3 y^{2}}{x^{6}}$

52. Simplify $\left(\frac{5}{2} a^{-4} b^{7}\right)^{-3}$.
a. $\frac{125 b^{21}}{8 a^{12}}$
b. $\frac{8 a^{12}}{125 b^{21}}$
c. $\frac{125 a^{12}}{8 b^{21}}$
d. $\frac{8 b^{4}}{125 a^{7}}$

- 53. Simplify $\frac{\left(m^{3} n^{-3}\right)^{-1}}{\left(m^{-2} n\right)^{4}}$.
a. $\frac{m^{5}}{n^{7}}$
b. $\frac{m^{5}}{n}$
c. $\frac{m^{11}}{n}$
d. $\frac{m^{11}}{n^{7}}$


## Short Answer

54. Evaluate $\sqrt[3]{-1728}$.
55. Estimate the value of $\sqrt{35}$ to one decimal place.
56. Between which 2 consecutive integers on a number line would you locate $\sqrt[4]{220}$ ?
57. Which of these numbers are irrational?
$\sqrt[5]{-1024}, \sqrt{72}, \sqrt[3]{125}, 6.3 \overline{1} 4, \sqrt[4]{64},-12.8, \sqrt{196}, 8.121121112111 \ldots$
58. Write $\sqrt{1694}$ in simplest form.
59. Write $8 \sqrt{ } 19$ as an entire radical.
60. A cube has a volume of 1280 cubic feet. Determine the edge length of the cube as a radical in simplest form.
61. Evaluate $\left(\frac{8}{27}\right)^{-\frac{2}{3}}$ without using a calculator.
62. Evaluate $(0.027)^{-\frac{1}{3}}$ without using a calculator.
63. Evaluate $81^{-\frac{3}{4}}$ without using a calculator.
64. A sphere has volume $1417 \mathrm{~cm}^{3}$. What is the radius of the sphere to the nearest tenth of a centimetre?
65. A sphere has volume $2245 \mathrm{~cm}^{3}$. What is the surface area of the sphere to the nearest tenth of a square centimetre?

## Problem

66. Is the cube root of 250 rational or irrational?

Use 2 different strategies to justify your answer.
67. This diagram shows a cube with volume $V$ cubic units and edge length $s$ units.


Provide a value of $V$ for which $s$ is rational.
68. In isosceles $\triangle \mathrm{ABC}$, what is the length of BC ? Write your answer as a mixed radical.

69. The height, $h$ metres, of a Douglas fir tree can be estimated from the formula $h=35 d^{\frac{2}{3}}$, where $d$ metres is the diameter at the base. Use this formula to determine the approximate height of a Douglas fir tree with base diameter 4.1 m . Write the answer to the nearest metre.
70. A formula for the approximate surface area, $S A$ square metres, of a person's body is
$S A=0.096 m^{\frac{7}{10}}$, where $m$ is the person's mass, in kilograms.
Calculate the surface area of a person with mass 75 kg .
71. Here is Tanisha's solution for evaluating a power:

$$
\begin{aligned}
\left(\frac{5}{4}\right)^{\frac{2}{2}} & =\left(\sqrt{\frac{5}{4}}\right)^{7} \\
& =(1.1180 \ldots)^{7} \\
& =2.1837 \ldots
\end{aligned}
$$

Identify the errors Tanisha made. Write a correct solution.
72. At a distance of 1 m from a light source, the intensity of the light is $2 \mathrm{~mW} / \mathrm{m}^{2}$ (milliwatts per square metre). The intensity, $I$, at a distance $d$ metres from the source is given by the formula: $I=2 d^{-2}$.
Determine the intensity of the light 2.5 m from the source.
73. Here is a student's solution for evaluating a power:

$$
\begin{aligned}
\left(\frac{8}{27}\right)^{-\frac{2}{3}} & =\left(-\frac{8}{27}\right)^{\frac{2}{3}} \\
& =\left(\sqrt{-\frac{8}{27}}\right)^{2} \\
& =\left(-\frac{2}{3}\right)^{2} \\
& =\frac{4}{9}
\end{aligned}
$$

Identify any errors in the solution. Write a correct solution.
74. A cone with equal height and radius has volume $492 \mathrm{~cm}^{3}$. What is the height of the cone to the nearest tenth of a centimetre?
75. A tree farmer used the formula $V=0.5 d^{2} h$ to estimate the volume, $V$ cubic metres, of a tree with height $h$ metres and mean trunk diameter $d$ metres. The height of a tree is 20 times its mean trunk diameter, and its volume is $230 \mathrm{~m}^{3}$. What is the mean trunk diameter of this tree to the nearest metre?
76. Identify any errors in each simplification. Write a correct solution.
a) $\left(x^{-6} y^{6}\right)\left(x^{-\frac{1}{6}} y^{5}\right)=x^{-6} \cdot x^{-\frac{1}{6}} \cdot y^{6} \cdot y^{5}$

$$
=x^{1} \cdot y^{30}
$$

$$
=x y^{30}
$$

b) $\left(\frac{2 m^{\frac{1}{4}}}{n^{4}}\right)^{-4}=-\frac{8 m^{-1}}{n^{0}}$

$$
\begin{aligned}
& =-8 m^{-1} \\
& =\frac{1}{8 m}
\end{aligned}
$$

77. Use exponent laws to simplify $(\sqrt[8]{x})\left(\sqrt[5]{x^{3}}\right)$. Explain your strategy.
review unit 4 Answer Section

## MULTIPLE CHOICE

1. ANS: B

LOC: 10.AN2
2. ANS: A

LOC: 10.AN2
3. ANS: A

LOC: 10.AN2
4. ANS: A

LOC: 10.AN1
5. ANS: A

LOC: 10.AN2
6. ANS: B

LOC: 10.AN1
7. ANS: D

LOC: 10.AN2
8. ANS: B

LOC: 10.AN2
9. ANS: C

LOC: 10.AN2
10. ANS: D

LOC: 10.AN2
11. ANS: B

LOC: 10.AN2
12. ANS: A

LOC: 10.AN2
13. ANS: D

LOC: 10.AN1
14. ANS: A

LOC: 10.AN2
15. ANS: B

LOC: 10.AN2
16. ANS: B

LOC: 10.AN2
17. ANS: A

LOC: 10.AN2
18. ANS: C

LOC: 10.AN2
19. ANS: A

LOC: 10.AN2
20. ANS: C

LOC: 10.AN2
21. ANS: B

LOC: 10.AN2

| PTS: | 1 DIF: | Easy |
| :---: | :---: | :---: |
| TOP: |  |  |
| PTS: | DIF: | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | DIF | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | DIF: | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | 1 DIF: | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | 1 DIF: | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | DIF: | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | DIF: | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | 1 DIF: | Moderate |
| TOP: Algebra and Number |  |  |
| PTS: | 1 DIF: | Moderate |
| TOP: Algebra and Number |  |  |
| PTS: | 1 DIF: | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | 1 DIF: | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | DIF: | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | DIF: | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | 1 DIF: | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | 1 DIF: | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | 1 DIF: | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | DIF: | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | 1 DIF: | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | 1 DIF: | Easy |
| TOP: Algebra and Number |  |  |
| PTS: | 1 DIF: | Easy |
| TOP: | Algebra and Number |  |

REF: 4.1 Estimating Roots
KEY: Procedural Knowledge
REF: 4.1 Estimating Roots
KEY: Conceptual Understanding
REF: 4.2 Irrational Numbers
KEY: Procedural Knowledge
REF: 4.2 Irrational Numbers
KEY: Procedural Knowledge
REF: 4.2 Irrational Numbers
KEY: Conceptual Understanding
REF: 4.2 Irrational Numbers
KEY: Conceptual Understanding
REF: 4.2 Irrational Numbers
KEY: Procedural Knowledge
REF: 4.2 Irrational Numbers
KEY: Procedural Knowledge
REF: 4.2 Irrational Numbers
KEY: Conceptual Understanding
REF: 4.2 Irrational Numbers
KEY: Conceptual Understanding
REF: 4.3 Mixed and Entire Radicals
KEY: Conceptual Understanding
REF: 4.3 Mixed and Entire Radicals
KEY: Conceptual Understanding
REF: 4.3 Mixed and Entire Radicals
KEY: Conceptual Understanding
REF: 4.3 Mixed and Entire Radicals
KEY: Conceptual Understanding
REF: 4.3 Mixed and Entire Radicals
KEY: Conceptual Understanding
REF: 4.3 Mixed and Entire Radicals
KEY: Conceptual Understanding
REF: 4.3 Mixed and Entire Radicals
KEY: Conceptual Understanding


REF: 4.5 Negative Exponents and Reciprocals LOC: 10.AN3
TOP: Algebra and Number KEY: Conceptual Understanding
40. ANS: D PTS: 1 DIF: Moderate

REF: 4.5 Negative Exponents and Reciprocals LOC: 10.AN3
TOP: Algebra and Number KEY: Conceptual Understanding
41. ANS: D PTS: 1 DIF: Easy

REF: 4.5 Negative Exponents and Reciprocals LOC: 10.AN3
TOP: Algebra and Number KEY: Conceptual Understanding
42. ANS: C PTS: 1 DIF: Moderate

REF: 4.5 Negative Exponents and Reciprocals LOC: 10.AN3
TOP: Algebra and Number KEY: Conceptual Understanding
43. ANS: A PTS: 1 DIF: Easy

REF: 4.5 Negative Exponents and Reciprocals LOC: 10.AN3
TOP: Algebra and Number KEY: Conceptual Understanding
44. ANS: A PTS: 1 DIF: Easy

REF: 4.5 Negative Exponents and Reciprocals LOC: 10.AN3
TOP: Algebra and Number KEY: Conceptual Understanding
45. ANS: D PTS: 1 DIF: Easy

REF: 4.5 Negative Exponents and Reciprocals
LOC: 10.AN3
TOP: Algebra and Number KEY: Conceptual Understanding
46. ANS: C PTS: 1 DIF: Moderate

REF: 4.5 Negative Exponents and Reciprocals LOC: 10.AN3
TOP: Algebra and Number KEY: Conceptual Understanding
47. ANS: A DTS: 1 DIF: Easy REF: 4.6 Applying the Exponent Laws

LOC: 10.AN3
48. ANS: B

LOC: 10.AN3
49. ANS: D

LOC: 10.AN3
50. ANS: A

LOC: 10.AN3
51. ANS: B

LOC: 10.AN3
52. ANS: B

LOC: 10.AN3
53. ANS: B

LOC: 10.AN3
TOP: Algebra and Number KEY: Conceptual Understanding
PTS: 1 DIF: Easy REF: 4.6 Applying the Exponent Laws
TOP: Algebra and Number KEY: Conceptual Understanding
PTS: 1 DIF: Easy REF: 4.6 Applying the Exponent Laws
TOP: Algebra and Number KEY: Conceptual Understanding
PTS: 1 DIF: Easy REF: 4.6 Applying the Exponent Laws
TOP: Algebra and Number KEY: Conceptual Understanding
PTS: 1 DIF: Moderate REF: 4.6 Applying the Exponent Laws
TOP: Algebra and Number KEY: Conceptual Understanding
PTS: 1 DIF: Moderate REF: 4.6 Applying the Exponent Laws
TOP: Algebra and Number KEY: Conceptual Understanding
PTS: 1 DIF: Moderate REF: 4.6 Applying the Exponent Laws
TOP: Algebra and Number KEY: Conceptual Understanding

## SHORT ANSWER

54. ANS:
-12
PTS: 1 DIF: Easy REF: 4.1 Estimating Roots
LOC: 10.AN1 TOP: Algebra and Number KEY: Conceptual Understanding
55. ANS:
5.9

PTS: 1 DIF: Moderate REF: 4.1 Estimating Roots

LOC: 10.AN2
TOP: Algebra and Number
KEY: Conceptual Understanding
56. ANS:

3 and 4
PTS: 1 DIF: Moderate REF: 4.2 Irrational Numbers
LOC: 10.AN2 TOP: Algebra and Number KEY: Conceptual Understanding
57. ANS:
$\sqrt{72}, \sqrt[4]{64}$, and $8.121121112111 \ldots$

PTS: 1
DIF: Easy
REF: 4.2 Irrational Numbers
LOC: 10.AN2
TOP: Algebra and Number
KEY: Conceptual Understanding
58. ANS:
$11 \sqrt{ } 14$
PTS: 1
LOC: 10.AN2
DIF: Easy REF: 4.3 Mixed and Entire Radicals
TOP: Algebra and Number
KEY: Conceptual Understanding
59. ANS:
$\sqrt{1216}$

PTS: 1
LOC: 10.AN2
60. ANS:
$4 \sqrt[3]{20} \mathrm{ft}$.

PTS: 1
LOC: 10.AN2
DIF: Easy REF: 4.3 Mixed and Entire Radicals
TOP: Algebra and Number
KEY: Conceptual Understanding

ANS:
9
4

PTS: 1
LOC: 10.AN3
DIF: Moderate REF: 4.5 Negative Exponents and Reciprocals TOP: Algebra and Number

KEY: Conceptual Understanding
62. ANS:

10
3

PTS: 1
DIF: Moderate
REF: 4.5 Negative Exponents and Reciprocals
LOC: 10.AN3
TOP: Algebra and Number
KEY: Conceptual Understanding
63. ANS:

1
27

PTS: 1
DIF: Moderate REF: 4.5 Negative Exponents and Reciprocals
LOC: 10.AN3
TOP: Algebra and Number
KEY: Conceptual Understanding
64. ANS:
7.0 cm

PTS: 1 DIF: Moderate REF: 4.6 Applying the Exponent Laws

LOC: 10.AN3
TOP: Algebra and Number
KEY: Conceptual Understanding
65. ANS:
$829.1 \mathrm{~cm}^{2}$

PTS: 1 DIF: Moderate REF: 4.6 Applying the Exponent Laws
LOC: 10.AN3
TOP: Algebra and Number
KEY: Conceptual Understanding

## PROBLEM

66. ANS:

250 is not a perfect cube, so the cube root of 250 is irrational.
$\sqrt[3]{250}=6.299605249474$.
$6.299605249474 \ldots$ does not appear to terminate or repeat.
So, the cube root of 250 is likely irrational.
PTS: 1 DIF: Moderate REF: 4.2 Irrational Numbers
LOC: 10.AN1 TOP: Algebra and Number KEY: Problem-Solving Skills
67. ANS:

The formula for the volume, $V$, of a cube with edge length $s$ units is:
$V=s^{3}$
To determine the value of $s$, take the cube root of each side.
$\sqrt[3]{V}=\sqrt[3]{s^{3}}$
$\sqrt[3]{V}=s$

For $s$ to be rational, $V$ must be a positive number that is a perfect cube.
For example, $V=125$

PTS: 1 DIF: Moderate REF: 4.2 Irrational Numbers
LOC: 10.AN1 TOP: Algebra and Number
KEY: Problem-Solving Skills | Communication
68. ANS:

Use the Pythagorean Theorem in $\triangle \mathrm{ABD}$ to determine BD .
$10^{2}=5^{2}+\mathrm{BD}^{2}$
$B D^{2}=10^{2}-5^{2}$
$\mathrm{BD}^{2}=75$
$B D=\sqrt{75}$
$\mathrm{BD}=5 \sqrt{3}$
$B D=\frac{1}{2} B C$
So, $B C=2 \cdot B D$
$\mathrm{BC}=2(5 \sqrt{3})$
$=10 \sqrt{3}$

The length of BC is $10 \sqrt{3} \mathrm{ft}$.
PTS: 1 DIF: Moderate REF: 4.3 Mixed and Entire Radicals
LOC: 10.AN2 TOP: Algebra and Number KEY: Problem-Solving Skills
69. ANS:

Substitute $d=4.1$ in the formula:
$h=35 d^{\frac{2}{3}}$
$h=35\left(4.1^{\frac{2}{3}}\right)$
$h=35\left(\sqrt[3]{4.1^{2}}\right)$
$h=35(2.5616 \ldots)$
$h=89.6583 \ldots$
So, the height of a Douglas fir with a base diameter of 4.1 m is approximately 90 m .
PTS: 1 DIF: Moderate REF: 4.4 Fractional Exponents and Radicals
LOC: 10.AN3 TOP: Algebra and Number KEY: Problem-Solving Skills
70. ANS:

Substitute $m=75$ in the formula: $S A=0.096 m^{\frac{7}{10}}$
$S A=0.096(75)^{\frac{7}{10}}$
$S A=0.096 \sqrt[10]{75^{7}}$
$S A=1.9715 \ldots$
The surface area of a person with mass 75 kg is approximately $2.0 \mathrm{~m}^{2}$.
PTS: 1 DIF: Moderate REF: 4.4 Fractional Exponents and Radicals
LOC: 10.AN3
TOP: Algebra and Number
KEY: Problem-Solving Skills
71. ANS:

Tanisha made an error in the first line when she wrote the square root symbol $(\sqrt{ })$ instead of the $(\sqrt[7]{ })$ symbol. Also, the exponent outside the bracket should have been 2, not 7. (The numerator of a fractional exponent represents the index of the radical and the denominator represents the exponent of the power.)

A correct solution:

$$
\begin{aligned}
\left(\frac{5}{4}\right)^{\frac{2}{7}} & =\left(\sqrt[7]{\frac{5}{4}}\right)^{2} \\
& =(1.0323 \ldots)^{2} \\
& =1.0658 \ldots
\end{aligned}
$$

PTS: 1 DIF: Moderate REF: 4.4 Fractional Exponents and Radicals
LOC: 10.AN3 TOP: Algebra and Number
KEY: Problem-Solving Skills |Communication
72. ANS:

Use the formula $I=2 d^{-2}$. Substitute: $d=2.5$

$$
\begin{aligned}
I & =2(2.5)^{-2} \\
& =2\left(\frac{1}{2.5^{2}}\right) \\
& =2\left(\frac{1}{6.25}\right) \\
& =0.32
\end{aligned}
$$

At a distance of 2.5 m , the intensity of light is $0.32 \mathrm{~mW} / \mathrm{m}^{2}$.
PTS: 1 DIF: Moderate REF: 4.5 Negative Exponents and Reciprocals
LOC: 10.AN3 TOP: Algebra and Number KEY: Problem-Solving Skills
73. ANS:

In the first line of the solution, to write the power with a positive exponent, the student wrote the fraction inside the brackets as a negative fraction instead of taking the reciprocal of the original fraction.

In the second line, the student wrote the index of the radical as 2 instead of 3 . The radicand should have been positive and should have been written as the reciprocal of the fraction.

A correct solution is:

$$
\begin{aligned}
\left(\frac{8}{27}\right)^{-\frac{2}{3}}= & \left(\frac{27}{8}\right)^{\frac{2}{3}} \\
= & \left(\sqrt[3]{\frac{27}{8}}\right)^{2} \\
& =\left(\frac{3}{2}\right)^{2} \\
& =\frac{9}{4}
\end{aligned}
$$

PTS: 1 DIF: Moderate REF: 4.5 Negative Exponents and Reciprocals
LOC: 10.AN3 TOP: Algebra and Number
KEY: Problem-Solving Skills | Communication
74. ANS:

The volume of a cone with base radius $r$ and height $h$ is given by the formula:
$V=\frac{1}{3} \pi r^{2} h$
The cone has equal height and radius.
So, substitute: $r=h$
$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{1}{3} \pi h^{2} h$
$V=\frac{1}{3} \pi h^{3}$

Substitute $V=492$, then solve for $h$.

$$
\begin{aligned}
492 & =\frac{1}{3} \pi h^{3} \quad \text { Multiply each side by } 3 . \\
3(492) & =3\left(\frac{1}{3} \pi h^{3}\right) \\
1476 & =\pi h^{3} \quad \text { Divide each side by } \pi \\
\frac{1476}{\pi} & =\frac{\pi h^{3}}{\pi} \\
\frac{1476}{\pi} & =h^{3}
\end{aligned}
$$

To solve for $h$, take the cube root of each side by raising each side to the one-third power.
$\left(\frac{1476}{\pi}\right)^{\frac{1}{3}}=\left(h^{3}\right)^{\frac{1}{3}}$
$\left(\frac{1476}{\pi}\right)^{\frac{1}{3}}=h$
Use a calculator.
$h=7.7740$. .
The height of the cone is approximately 7.8 cm .
PTS: 1 DIF: Moderate REF: 4.6 Applying the Exponent Laws
LOC: 10.AN3 TOP: Algebra and Number KEY: Problem-Solving Skills
75. ANS:

Use the formula.
Substitute: $V=230$ and $h=20 d$

$$
\begin{aligned}
230 & =0.5 d^{2} \cdot 20 d \\
d^{3} & =\frac{230}{10} \\
d & =\sqrt[3]{23} \\
d & =2.8438 \ldots
\end{aligned}
$$

The mean trunk diameter is approximately 3 m .
PTS: 1 DIF: Moderate REF: 4.6 Applying the Exponent Laws
LOC: 10.AN3 TOP: Algebra and Number KEY: Problem-Solving Skills
76. ANS:
a) There is an error in the second line. When multiplying powers with the same base, the exponents should have been added, not multiplied.
A correct solution:

$$
\begin{aligned}
\left(x^{-6} y^{6}\right)\left(x^{-\frac{1}{6}} y^{5}\right) & =x^{-6} \cdot x^{-\frac{1}{6}} \cdot y^{6} \cdot y^{5} \\
& =x^{-\frac{37}{6}} y^{11}
\end{aligned}
$$

$$
=\frac{y^{11}}{x^{\frac{37}{6}}}
$$

b) There are two errors in the first line. The coefficient 2 was incorrectly multiplied by the exponent -4 . And, the exponent of the variable $n$ was added to -4 instead of being multiplied by -4 .
A correct solution:

$$
\begin{aligned}
\left(\frac{2 m^{\frac{1}{4}}}{n^{4}}\right)^{-4}=\frac{2^{-4} m^{-1}}{n^{-16}} & \\
& =\frac{n^{16}}{2^{4} m^{1}} \\
& =\frac{n^{16}}{16 m}
\end{aligned}
$$

PTS: 1 DIF: Moderate REF: 4.6 Applying the Exponent Laws
LOC: 10.AN3 TOP: Algebra and Number
KEY: Problem-Solving Skills | Communication
77. ANS:
$(\sqrt[8]{x})\left(\sqrt[5]{x^{3}}\right)$
Write each radical as a power.
$(\sqrt[8]{x})\left(\sqrt[5]{x^{3}}\right)=x^{\frac{1}{8}} \cdot x^{\frac{3}{5}}$
Use the product of powers law:
$x^{\frac{1}{8}} \cdot x^{\frac{3}{5}}=x^{\frac{1}{8}+\frac{3}{5}}$
Write equivalent fractions with a common denominator, 40.

$$
\begin{aligned}
x^{\frac{1}{8}+\frac{3}{5}} & =x^{\frac{5}{40}+\frac{24}{40}} \\
& =x^{\frac{29}{40}}
\end{aligned}
$$

I can write this power as a radical:
$x^{\frac{29}{40}}=\sqrt[40]{x^{29}}$ or $(\sqrt[40]{x})^{29}$
PTS: 1 DIF: Moderate REF: 4.6 Applying the Exponent Laws
LOC: 10.AN3 TOP: Algebra and Number
KEY: Problem-Solving Skills |Communication

