NAME: \qquad
SECTION A: Selected Response: Place the LETTER of your response in the \qquad at the right. [17 points]

1. The function $y=f(x)$ is stretched vertically by a factor of 3 and is translated 4 units to 1 . \qquad the left. What is the equation of the transformed function?
A $\frac{1}{3} y=f(x-4)$
B $\frac{1}{3} y=f(x+4)$
C $3 y=f(x-4)$
D $3 y=f(x+4)$
2. The graph of $y=f(x)$ contains $\mathrm{P}(-2,6)$. What are the coordinates of the image of this
3. \qquad point on the function $y-1=-\frac{1}{3} f(2(x-1))$?
A $(0,-1)$
B $(-3,-1)$
C $(0,-17)$
D $(-3,-17)$
4. The mapping rule $(x, y) \rightarrow(2 x-1, y+3)$ is applied to the function $y=f(x)$. What is
5. \qquad the equation of the resulting function?
A $\quad y=f(2(x-1))+3$
B $\quad y=f(2(x+1))-3$
C $\quad y=f\left(\frac{1}{2}(x-1)\right)-3$
D $y=f\left(\frac{1}{2}(x+1)\right)+3$
6. The point (a, b) is on the graph of the function $y=f(x)$. What are the coordinates of
7. \qquad the image of this point on the graph of $y+b=f(x+1)$?
A $(a-1,2 b)$
B $(a+1,2 b)$
C $(a-1,0)$
D $(a+1,0)$
8. The function $y=f(x)$ is transformed to produce $y=\frac{1}{3} f(-x)$. Which describes the 5. \qquad transformations that are required?

A A reflection in the x-axis and a vertical stretch by a factor of 3 .
B A reflection in the y-axis and a vertical stretch by a factor of 3 .
C A reflection in the x-axis and a vertical stretch by a factor of $\frac{1}{3}$
D A reflection in the y-axis and a vertical stretch by a factor of $\frac{1}{3}$
6. Which mapping rule would map the function $y=f(x)$ onto the function
6. \qquad $y=f\left(-\frac{1}{3} x+3\right)$?
A $(x, y) \rightarrow(-3 x+1, y)$
B $(x, y) \rightarrow(-3 x+9, y)$
C $(x, y) \rightarrow\left(-\frac{1}{3} x+1, y\right)$
D $(x, y) \rightarrow\left(-\frac{1}{3} x+9, y\right)$
7. Which would produce a graph with the same x -intercepts as the graph of $y=f(x)$?
7. \qquad
A $y=f(-x)$
B $\quad y=f(x+1)$
C $\frac{1}{2} y=f(x)$
D $y=f(x)+1$
8. The domain of $y=f(x)$ is $\{x /-6 \leq x \leq 12, x \in \mathbb{R}\}$. What is the domain of
8. \qquad $y=f(2(x+1))$?
A $\quad\{x /-4 \leq x \leq 5, x \in \mathbb{R}\}$
B $\{x /-13 \leq x \leq 23, x \in \mathbb{R}\}$
C $\{x /-2 \leq x \leq 7, x \in \mathbb{R}\}$
D $\{x /-11 \leq x \leq 25, x \in \mathbb{R}\}$
9. The function $y=f(x)$ is reflected in the x -axis and is translated 5 units down. What is
9. \qquad the equation of the transformed function?
A $\quad y=-f(x)+5$
B $\quad y=f(-x)+5$
C $\quad y=-f(x)-5$
D $y=f(-x)-5$
10. If $f(x)=x^{2}+4 x-12$, what are the zeroes of the function $y=-f\left(\frac{1}{2} x\right)$?
10. \qquad
A -3 and 1
B 3 and -1
C -12 and 4
D 12 and -4
11. The graph of $y=f(x)$ is shown. Which is an invariant point under the transformation
11. \qquad $-3 y=f(x)$?

A $(-1,0)$
B $(0,1)$
C $(1,2)$
D $(-3,-2)$

12. The function $y=f(x)$ contains the point $P(4,2)$. It is transformed by applying the
12. \qquad following transformations in the order listed. What is the resulting image of point P ?

- Reflection in the x-axis
- Translated 2 units to the left and 3 units up
- Stretched vertically by a factor of 2
- Translated 1 unit right and 1 unit up
- Stretched horizontally by a factor of 3
A $(5,6)$
B $(-15,11)$
C $(3,15)$
D $(9,3)$

13. Which mapping rule would map $y=2 f(x-1)$ onto $y=f(x+3)$? \qquad
A $(x, y) \rightarrow\left(x+4, \frac{1}{2} y\right)$
B $(x, y) \rightarrow\left(x-4, \frac{1}{2} y\right)$
C $(x, y) \rightarrow(x+4,2 y)$
D $(x, y) \rightarrow(x-4,2 y)$
14. The mapping rule $(x, y) \rightarrow(4 x-3,-2 y)$ is applied to $y=f(x)$ to produce a function
15. \qquad of the form $y=a f(b(x-h))+k$. Which values are correct for a and b ?
A $\quad a=-\frac{1}{2}, \quad b=\frac{1}{4}$
B $\quad a=-2, \quad b=4$
C $a=-2, \quad b=\frac{1}{4}$
D $\quad a=-\frac{1}{2}, \quad b=4$
16. The graph of $y=f(x)$ is shown. Which represents the graph of $y=f^{-1}(x)$? \qquad

B

D

17. Which mapping rule would map $y=f(x)$ onto $y=g(x)$? \qquad

A $\quad(x, y) \rightarrow\left(-x+1, \frac{1}{2} y\right)$
B $\quad(x, y) \rightarrow\left(-x-1, \frac{1}{2} y\right)$
C $(x, y) \rightarrow\left(x+1,-\frac{1}{2} y\right)$
D $(x, y) \rightarrow\left(x-1,-\frac{1}{2} y\right)$
18. What is the inverse of $\mathrm{g}(x)=-\frac{2}{3} x-4$?
19. \qquad
A $\quad g^{-1}(x)=\frac{2}{3} x+4$
B $\quad g^{-1}(x)=-\frac{3}{2} x+4$
C $\quad g^{-1}(x)=\frac{3}{2} x+6$
D $\quad g^{-1}(x)=-\frac{3}{2} x-6$

SECTION B: Constructed Response: Answer ALL questions in the space provided. Full credit will only be awarded for correct solutions.

1. The graph of $g(x)$ is a transformation of $f(x)$.
(a) List the transformations required to map [2 pts] $f(x)$ onto $\mathrm{g}(x)$.
(b) Write the mapping rule.
[1 pt]
(c) Determine the equation of $g(x)$ in the [1 pt] form $y=a f(b(x-h))+k$

2. The graph of a function $y=f(x)$ is shown below.
(a) On the same grid, sketch the graph of the function that results when the mapping rule $(x, y) \rightarrow(-x+3,2 y-1)$ is applied to this function.
(b) Write the equation of the resulting
[1 pt]

3. The function $f(x)=x^{2}$ is transformed to produce $g(x)=-f\left(\frac{1}{2} x+1\right)+3$.
(a) Write the mapping rule that maps [2 pts] $f(x)$ onto $g(x)$.

4. (a) Algebraically determine the inverse of $f(x)=x^{2}-6 x+1$
[3 pts]
(b) Restrict the domain of $f(x)$ so that its inverse is also a function.
[1 pt]
5. The function $y=f(x)$ is transformed to produce a function of the form $y=a f(b(x-h))+k$. The list of transformations is given below.

- Reflected in the x-axis
- Stretched vertically by a factor of 4
- Stretched horizontally by a factor of $\frac{2}{3}$
- Translated 3 units right and 5 units down.
(a) Write the mapping rule that represents this set of transformations.
(b) Write the function in the form $y=a f(b(x-h))+k$.

