38

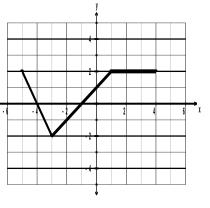
5.___

6.

7._____

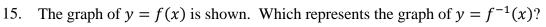
NAME:

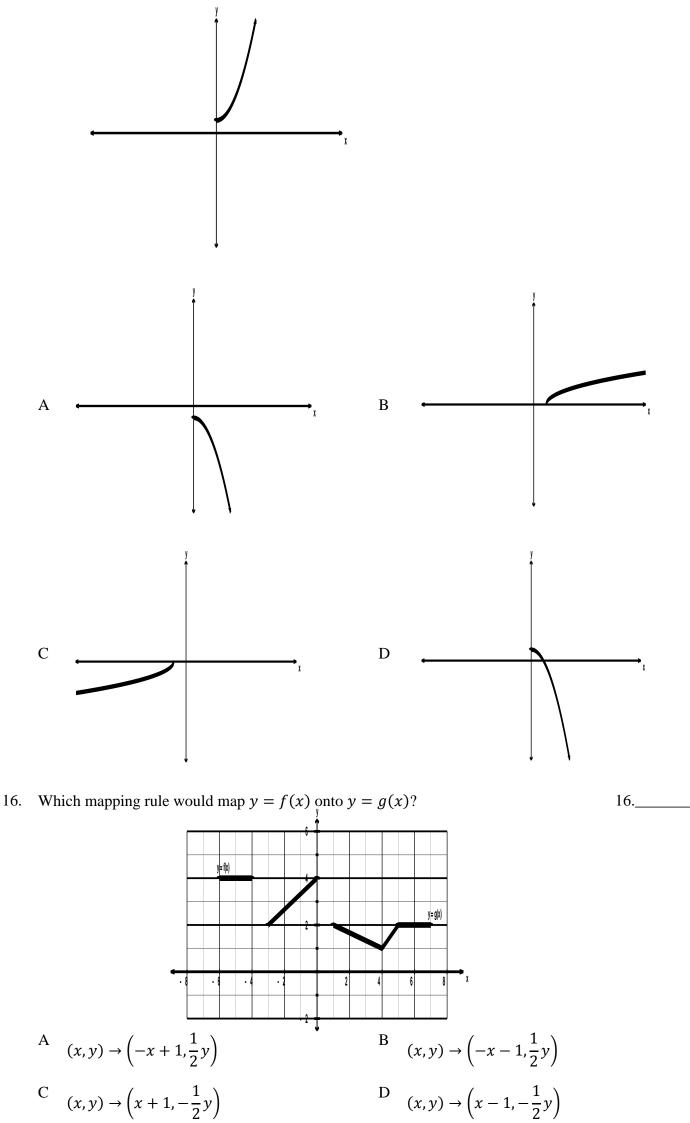
SECTION A: Selected Response: Place the LETTER of your response in the _____ at the right. [17 points]


- 1. The function y = f(x) is stretched vertically by a factor of 3 and is translated 4 units to 1._____ the left. What is the equation of the transformed function?
 - A $\frac{1}{3}y = f(x-4)$ C 3y = f(x-4)B $\frac{1}{3}y = f(x+4)$ D 3y = f(x+4)
- 2. The graph of y = f(x) contains P(-2, 6). What are the coordinates of the image of this 2._____ point on the function $y - 1 = -\frac{1}{3}f(2(x - 1))$?
 - A(0, -1)B(-3, -1)C(0, -17)D(-3, -17)
- 3. The mapping rule $(x, y) \rightarrow (2x 1, y + 3)$ is applied to the function y = f(x). What is 3._____ the equation of the resulting function?
 - A y = f(2(x-1)) + 3C $y = f(\frac{1}{2}(x-1)) - 3$ B y = f(2(x+1)) - 3D $y = f(\frac{1}{2}(x+1)) + 3$
- 4. The point (a, b) is on the graph of the function y = f(x). What are the coordinates of 4. the image of this point on the graph of y + b = f(x + 1)?
 - A (a-1,2b)B (a+1,2b)C (a-1,0)D (a+1,0)
- 5. The function y = f(x) is transformed to produce $y = \frac{1}{3}f(-x)$. Which describes the transformations that are required?
 - A reflection in the x-axis and a vertical stretch by a factor of 3.
 - \mathbf{B} A reflection in the y-axis and a vertical stretch by a factor of 3.
 - C A reflection in the x-axis and a vertical stretch by a factor of $\frac{1}{3}$
 - D A reflection in the y-axis and a vertical stretch by a factor of $\frac{1}{2}$
- 6. Which mapping rule would map the function y = f(x) onto the function $y = f(-\frac{1}{3}x + 3)$?
 - A $(x,y) \rightarrow (-3x+1,y)$ B $(x,y) \rightarrow (-3x+9,y)$ C $(x,y) \rightarrow \left(-\frac{1}{3}x+1,y\right)$ D $(x,y) \rightarrow \left(-\frac{1}{3}x+9,y\right)$
- 7. Which would produce a graph with the same x-intercepts as the graph of y = f(x)?
 - A y = f(-x)C $\frac{1}{2}y = f(x)$ B y = f(x + 1)D y = f(x) + 1

8.	The domain of $y = f(x)$ is $\{x/-6 \le x \le 12, x \in \mathbb{R}\}$. What is the domain of $y = f(2(x + 1))$?			8	
	A $\{x/-4 \le x \le 5, x \in \mathbb{R}\}$ C $\{x/-2 \le x \le 7, x \in \mathbb{R}\}$	D	$\{x/-13 \le x \le 23, x \in \mathbb{R}\}$ $\{x/-11 \le x \le 25, x \in \mathbb{R}\}$		
9.	The function $y = f(x)$ is reflected in the x-axis and is translated 5 units down. What is the equation of the transformed function?				
	A $y = -f(x) + 5$ C $y = -f(x) - 5$	2	y = f(-x) + 5 $y = f(-x) - 5$		
10.	If $f(x) = x^2 + 4x - 12$, what are the zeroes of the	e funo	ction $y = -f\left(\frac{1}{2}x\right)?$	10	
	A -3 and 1 C -12 and 4	B D	3 and -1 12 and -4		

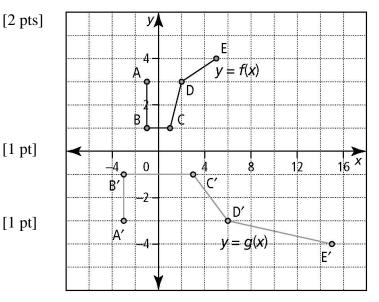
- 11. The graph of y = f(x) is shown. Which is an invariant point under the transformation 11._____ -3y = f(x)?
 - A (-1,0)
 - В (0,1)
 - C (1, 2) D (-3,-2)
- The function y = f(x) contains the point P(4, 2). It is transformed by applying the 12. following transformations in the order listed. What is the resulting image of point P?
 - Reflection in the x-axis
 - Translated 2 units to the left and 3 units up •
 - Stretched vertically by a factor of 2
 - Translated 1 unit right and 1 unit up
 - Stretched horizontally by a factor of 3 •
 - A (5,6) B (-15,11)
 - C (3,15) D (9,3)
- Which mapping rule would map y = 2f(x 1) onto y = f(x + 3)? 13.


A	$(x, y) \rightarrow \left(x + 4, \frac{1}{2}y\right)$	В	$(x,y) \rightarrow \left(x-4,\frac{1}{2}y\right)$
С	$(x,y) \to (x+4,2y)$	D	$(x,y) \to (x-4,2y)$


- 14. The mapping rule $(x, y) \rightarrow (4x 3, -2y)$ is applied to y = f(x) to produce a function 14._____ of the form y = af(b(x - h)) + k. Which values are correct for a and b?
 - A $a = -\frac{1}{2}$, $b = \frac{1}{4}$ B a = -2, b = 4D $a = -\frac{1}{2}$, b = 4C a = -2, $b = \frac{1}{4}$

12.____

13.____

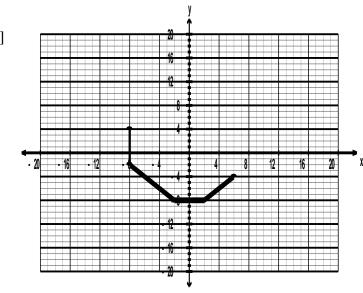

15.____

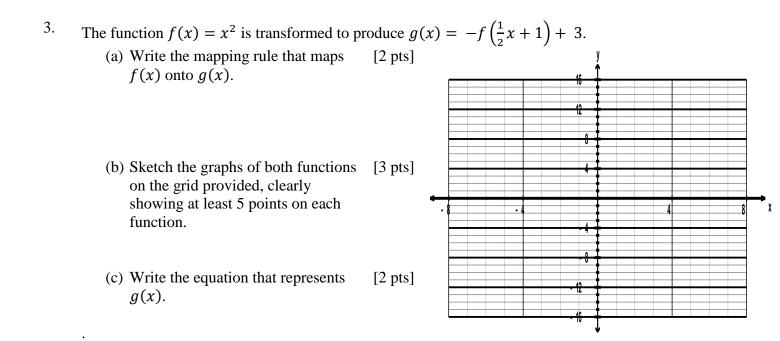
17. What is the inverse of $g(x) = -\frac{2}{3}x - 4$?

A
$$g^{-1}(x) = \frac{2}{3}x + 4$$

B $g^{-1}(x) = -\frac{3}{2}x + 4$
C $g^{-1}(x) = \frac{3}{2}x + 6$
D $g^{-1}(x) = -\frac{3}{2}x - 6$

SECTION B: Constructed Response: Answer ALL questions in the space provided. Full credit will only be awarded for correct **solutions.**


- 1. The graph of g(x) is a transformation of f(x).
 - (a) List the transformations required to map [2 pts] f(x) onto g(x).
 - (b) Write the mapping rule. [
 - (c) Determine the equation of g(x) in the [1 pt] form y = af(b(x - h)) + k


- 2. The graph of a function y = f(x) is shown below.
 - (a) On the same grid, sketch the graph of the [2 pts] function that results when the mapping rule $(x, y) \rightarrow (-x + 3, 2y 1)$ is applied to this function.
 - (b) Write the equation of the resulting function in the form y = af(b(x - h)) + k.

.

[1 pt]

17._____

4. (a) Algebraically determine the inverse of $f(x) = x^2 - 6x + 1$

(b) Restrict the domain of f(x) so that its inverse is also a function. [1 pt]

[3 pts]

5. The function y = f(x) is transformed to produce a function of the form y = af(b(x - h)) + k. The list of transformations is given below.

- Reflected in the x-axis
- Stretched vertically by a factor of 4
- Stretched horizontally by a factor of $\frac{2}{3}$
- Translated 3 units right and 5 units down.

(a) Write the mapping rule that represents this set of transformations. [2 pts]

(b) Write the function in the form
$$y = af(b(x - h)) + k$$
. [1 pt]