Unit 3: Review for Final Exam

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Write the prime factorization of 1386 .
a. $2 \cdot 7 \cdot 11 \cdot 9$
b. $2 \cdot 7 \cdot 99$
c. $2 \cdot 3^{2} \cdot 7 \cdot 11$
d. $2 \cdot 3 \cdot 7 \cdot 11$
\qquad 2. Determine the greatest common factor of 72 and 90 .
a. 20
b. 360
c. 4
d. 18
\qquad 3. Determine the least common multiple of 44 and 76.
a. 836
b. 4
c. 1672
d. 3344
\qquad 4. A developer wants to subdivide a rectangular plot of land measuring 750 m by 600 m into congruent square lots. What is the side length of the largest possible square?
a. 75 m
b. 30 m
c. $\quad 150 \mathrm{~m}$
d. 50 m
\qquad 5. One neighbour cuts his lawn every 4 days. Another neighbour cuts her lawn every 6 days. Suppose both neighbours cut their lawns today. How many days will pass before both neighbours cut their lawns on the same day again?
a. 24 days
b. 18 days
c. 2 days
d. 12 days
\qquad 6. There are 22 male students and 12 female students in a Grade 10 math class. The teacher wants to divide the class into groups with the same number of males and the same number of females in each group. What is the greatest number of groups the teacher can make?
a. 6
b. 2
c. 4
d. 8
\qquad 7. A cube has volume $13824 \mathrm{~cm}^{3}$. What is the surface area of the cube?
a. $\quad 110592 \mathrm{~cm}^{2}$
b. $3456 \mathrm{~cm}^{2}$
c. $24 \mathrm{~cm}^{2}$
d. $9216 \mathrm{~cm}^{2}$
\qquad 8. Determine the side length of this square.

a. 61 cm
b. $\quad 15.5 \mathrm{~cm}$
c. 930.25 cm
d. 413.44 cm
\qquad 9. Determine the edge length of this cube.

a. $\quad 332.55 \mathrm{~cm}$
b. 48 cm
c. 6.93 cm
d. 4096 cm
\qquad 10. A cube has surface area 5766 square feet. What is its volume?
a. 8649 cubic feet
b. 31 cubic feet
c. 1929 cubic feet
d. 29791 cubic feet
2. A cube with volume $343 \mathrm{~m}^{3}$ is to be painted. Each can of paint covers $31 \mathrm{~m}^{2}$. How many cans of paint are needed to paint the cube?
a. 10
b. 12
c. 6
d. 9
3. Factor the binomial $25 y^{2}-80 y$.
a. $5\left(5 y^{2}-16 y\right)$
b. $5 y(5 y-16 y)$
c. $y(25 y-80)$
d. $5 y(5 y-16)$
4. Factor the trinomial $-21 b^{2}+63 b+49$.
a. $-7\left(3 b^{2}-9 b+7\right)$
b. $-21\left(b^{2}-3 b-7\right)$
c. $-7\left(3 b^{2}-9 b-7\right)$
d. $21\left(-b^{2}+27 b+7\right)$
5. Factor the trinomial $-28 x^{5} y^{6}-16 x^{4} y^{5}-36 x^{3} y^{7}$.
a. $4 x^{4} y^{5}\left(-7 x y-4-9 y^{2}\right)$
b. $-4 x^{3} y^{5}\left(7 x^{2} y+4 x+9 y^{2}\right)$
c. $-2 x^{3} y^{5}\left(14 x^{2} y+8 x+18 y^{2}\right)$
d. $-4 x^{3}\left(7 x^{2} y^{6}+4 x y^{5}+9 y^{7}\right)$
6. Factor the binomial $-4 m^{2}-16 m^{4}$.
a. $-4 m^{2}\left(1+4 m^{2}\right)$
b. $-4 m^{2}\left(4 m^{2}\right)$
c. $-4\left(m^{2}+4 m^{4}\right)$
d. $-2 m^{2}\left(2+8 m^{2}\right)$
7. Simplify the expression $y^{2}+10 y-8-11 y^{2}-30 y-32$, then factor.
a. $-10\left(y^{2}-2 y-4\right)$
b. $-10\left(y^{2}+2 y+4\right)$
c. $-5\left(2 y^{2}+4 y+8\right)$
d. $-5\left(2 y^{2}+4 y+1\right)$
8. Identify the greatest common factor of the terms in the trinomial $4 s^{3} t^{4}+8 s^{4} t^{2}-10 s^{2} t^{3}$.
a. $4 s^{2} t^{2}$
b. $2 s^{2} t^{2}$
c. $2 s^{2} t^{3}$
d. $2 s^{3} t^{2}$
9. Factor the trinomial $21 m^{3}-28 m^{2} n-42 m n^{2}$.
a. $21 m\left(m^{2}-7 m-2 n^{2}\right)$
b. $7 m\left(3 m^{2}-4 m n-6 n^{2}\right)$
c. $7 m n\left(3 m^{2}-4 m-6 n\right)$
d. $7\left(3 m^{3}-4 m^{2} n-6 m n^{2}\right)$
10. Which expression represents the area of the shaded region?

a. $2 r(2 r-\pi)$
b. $r^{2}(1-\pi)$
c. $r^{2}(4-\pi)$
d. $r(r-2 \pi)$
11. Which of the following trinomials can be represented by a rectangle? Use algebra tiles to check.
a. $y^{2}+2 y+16$
b. $y^{2}+11 y+5$
c. $y^{2}+16 y+55$
d. $y^{2}+10 y+2$
12. Which of the following trinomials can be represented by a rectangle? Use algebra tiles to check.
a. $2 a^{2}+32 a+11$
b. $2 a^{2}+25 a+12$
c. $2 a^{2}+14 a+55$
d. $2 a^{2}+17 a+4$
13. Expand and simplify: $(p+3)(p-8)$
a. $p^{2}-5 p-24$
b. $p^{2}-11 p-24$
c. $p^{2}+11 p-24$
d. $p^{2}+5 p-24$
14. Expand and simplify: $(3-r)(6-r)$
a. $18-9 r+r^{2}$
b. $18-3 r+r^{2}$
c. $18+3 r+r^{2}$
d. $18+9 r+r^{2}$
15. Factor: $-14-5 x+x^{2}$
a. $(7+x)(-2+x)$
b. $(14+x)(-1+x)$
c. $(-14+x)(1+x)$
d. $(-7+x)(2+x)$
16. Factor: $-4 b^{2}+24 b+160$
a. $-4(b-8)(b+5)$
b. $-4(b+8)(b-5)$
c. $-4(b-4)(b+10)$
d. $-4(b+4)(b-10)$
17. Factor: $-2 d^{2}-8 d+192$
a. $-2(d+6)(d-16)$
b. $-2(d+8)(d-12)$
c. $-2(d-6)(d+16)$
d. $-2(d-8)(d+12)$
18. Complete: $(a+7)(a-\square)=a^{2}+\square a-21$
a. $(a+7)(a-4)=a^{2}+4 a-21$
b. $(a+7)(a-3)=a^{2}+4 a-21$
c. $(a+7)(a-3)=a^{2}+3 a-21$
d. $(a+7)(a-4)=a^{2}+3 a-21$
19. Factor: $c^{2}-9 c-52$
a. $(c-4)(c+13)$
b. $(c-2)(c+26)$
c. $(c+4)(c-13)$
d. $(c+2)(c-26)$
20. Expand and simplify: $(h-8)(h+12)$
a. $h^{2}-4 h-96$
b. $h^{2}+4 h-96$
c. $h^{2}+20 h-96$
d. $h^{2}-20 h-96$
21. Complete. $(k-\square)(k-6)=k^{2}-\square k+66$
a. $(k-11)(k-5)=k^{2}-6 k+66$
b. $(k-11)(k-6)=k^{2}-17 k+66$
c. $(k-11)(k-17)=k^{2}-6 k+66$
d. $(k-11)(k-6)=k^{2}-5 k+66$
22. Factor: $-4 m^{2}+28 m+120$
a. $-4(m+3)(m-10)$
b. $-4(m-3)(m+10)$
c. $-4(m-2)(m+15)$
d. $-4(m+2)(m-15)$
23. Which multiplication sentence does this set of algebra tiles represent?

a. $(2 x-1)(2 x-1)$
b. $\left(2 x^{2}+1\right)\left(2 x^{2}+1\right)$
c. $\left(2 x^{2}+x\right)\left(2 x^{2}+x\right)$
d. $(2 x+1)(2 x+1)$
24. Which set of algebra tiles represents $x^{2}+2 x+3$?
a.

c.

b.

d.

25. Expand and simplify: $(8 p+3)(7 p-4)$
a. $56 p^{2}+11 p-12$
b. $56 p^{2}-11 p-12$
c. $56 p^{2}+53 p-12$
d. $56 p^{2}-53 p-12$
\qquad 35. Expand and simplify: $(-5 m-3)(7+8 m)$
a. $-40 m^{2}-59 m-21$
c. $-40 m^{2}+11 m-21$
b. $40 m^{2}-59 m-21$
d. $-40 m^{2}-11 m-21$
26. Factor: $9 x^{2}+26 x+16$
a. $(9 x+4)(x+4)$
b. $(9 x+8)(x+2)$
c. $(3 x+4)(3 x+4)$
d. $(3 x+8)(3 x+2)$
27. Factor: $4 s^{2}-29 s-63$
a. $(2 s-7)(2 s+9)$
b. $(2 s+7)(2 s-9)$
c. $(4 s+7)(s-9)$
d. $(4 s-7)(s+9)$
28. Factor: $12 b^{2}+64 b-10$
a. $2(2 b-1)(6 b+5)$
b. $2(2 b+5)(6 b+1)$
c. $2(2 b-5)(6 b+1)$
d. $2(2 b+1)(6 b-5)$
29. Expand and simplify: $2(1-4 t)(9+8 t)$
a. $-64 t^{2}+56 t+18$
b. $-64 t^{2}+88 t+18$
c. $-192 t^{2}-168 t+54$
d. $-64 t^{2}-56 t+18$
30. Factor: $5 n^{2}+44 n-9$
a. $(5 n-1)(n+9)$
b. $(5 n+1)(n-9)$
c. $(5 n+9)(n-1)$
d. $(5 n-9)(n+1)$
31. Factor: $4-15 z-19 z^{2}$
a. $(2-19 z)(2+z)$
b. $(4-19 z)(1+z)$
c. $(2+19 z)(2-z)$
d. $(4+19 z)(1-z)$
32. Factor: $72 w^{2}+54 w-45$
a. $3(6 w+3)(4 w-5)$
b. $3(6 w+5)(4 w-3)$
c. $3(6 w-5)(4 w+3)$
d. $3(6 w-3)(4 w+5)$
33. Expand and simplify: $(8 h+1)\left(3 h^{2}-6 h+1\right)$
a. $24 h^{3}-51 h^{2}-14 h+1$
b. $24 h^{3}+45 h^{2}-6 h+1$
c. $24 h^{3}-45 h^{2}+2 h+1$
d. $24 h^{3}-48 h^{2}+8 h+1$
34. Expand and simplify: $(3 m-5 n)^{2}$
a. $9 m^{2}-25 n^{2}$
b. $9 m^{2}-15 m n+25 n^{2}$
c. $9 m^{2}-30 m n+25 n^{2}$
d. $9 m^{2}+25 n^{2}$
35. Expand and simplify: $(11 v-7 w)(11 v+7 w)$
a. $121 v^{2}+154 v w+49 w^{2}$
b. $121 v^{2}+49 w^{2}$
c. $121 v^{2}-49 w^{2}$
d. $121 v^{2}-154 v w+49 w^{2}$
36. Expand and simplify: $(4 d-1)\left(7 d^{2}+16 d-4\right)$
a. $28 d^{3}+71 d^{2}+4$
b. $28 d^{3}+64 d^{2}-16 d+4$
c. $28 d^{3}+57 d^{2}-32 d+4$
d. $28 d^{3}+57 d^{2}+4$
37. Which polynomial, written in simplified form, represents the area of this rectangle?

a. $6 x^{2}-10 x y-24 y^{2}$
b. $6 x^{2}+13 x y-24 y^{2}$
c. $12 x^{2}+20 x y-48 y^{2}$
d. $6 x^{2}+10 x y-24 y^{2}$
38. Expand and simplify: $\left(2 x^{2}+3 x-8\right)\left(9 x^{2}-2 x+7\right)$
a. $18 x^{4}+23 x^{3}-64 x^{2}+37 x-56$
b. $18 x^{4}+23 x^{3}-64 x^{2}-5 x+56$
c. $18 x^{4}+23 x^{3}-58 x^{2}+37 x+56$
d. $18 x^{4}-31 x^{3}-64 x^{2}+37 x-56$
39. Expand and simplify: $\left(n^{2}-2 n+3\right)\left(-4 n^{2}+3 n+6\right)$
a. $-4 n^{4}+11 n^{3}-12 n^{2}-3 n+18$
b. $-4 n^{4}+11 n^{3}+21 n+18$
c. $-4 n^{4}-5 n^{3}+21 n+18$
d. $-4 n^{4}-5 n^{3}-12 n^{2}+3 n+18$
40. Expand and simplify: $(6 p+5)(6 p-7)-(7 p-4)(p-2)$
a. $29 p^{2}-30 p-27$
b. $29 p^{2}+6 p-27$
c. $29 p^{2}+6 p-43$
d. $29 p^{2}-30 p-43$
41. Expand and simplify: $(5 x-y)(2 x+8 y)-(2 x-3 y)^{2}$
a. $6 x^{2}+44 x y-17 y^{2}$
b. $6 x^{2}+26 x y+1 y^{2}$
c. $6 x^{2}+50 x y+1 y^{2}$
d. $6 x^{2}+50 x y-17 y^{2}$
42. Each shape is a rectangle. Write a polynomial, in simplified form, to represent the area of the shaded region.

a. $5 x^{2}+23 x+46$
b. $5 x^{2}+29 x+10$
c. $5 x^{2}+23 x+10$
d. $5 x^{2}+29 x+46$
43. Factor: $49 a^{2}+28 a+4$
a. $(7 a+2)(7 a-2)$
b. $(49 a+2)(a+2)$
c. $(7 a-2)^{2}$
d. $(7 a+2)^{2}$
44. Factor: $144-168 r+49 r^{2}$
a. $(36-7 r)(4 a-7 r)$
b. $(12-7 r)(12+7 r)$
c. $(12+7 r)^{2}$
d. $(12-7 r)^{2}$
45. Factor: $16 p^{2}-81 q^{2}$
a. $(4 p-9 q)^{2}$
b. $(4 p+9 q)^{2}$
c. $(16 p-9 q)(p-9 q)$
d. $(4 p+9 q)(4 p-9 q)$
46. Find an integer to replace \square so that this trinomial is a perfect square. $\square x^{2}+56 x y+16 y^{2}$
a. 7
b. 14
c. 49
d. 196
47. Find an integer to replace \square so that this trinomial is a perfect square.
$64 v^{2}-\square v w+49 w^{2}$
a. 112
b. 392
c. 56
d. 14
\qquad 58. Factor: $121 s^{2}-132 s t+36 t^{2}$
a. $(11 s-6 t)^{2}$
b. $(11 s+6 t)^{2}$
c. $(11 s-t)(11 s-36 t)$
d. $(11 s-6 t)(11 s+6 t)$
48. Factor: $9 c^{2}-24 c+16$
a. $(3 c-4)^{2}$
b. $(3 c-4)(3 c+4)$
c. $(6 c-8)^{2}$
d. $(6 c-8)(6 c+8)$
49. Factor: $512-2 w^{4}$
a. $\left(16-w^{2}\right)\left(32-w^{2}\right)$
b. $2\left(16+w^{2}\right)(4+w)(4-w)$
c. $2\left(16-w^{2}\right)^{2}$
d. $2\left(16+w^{2}\right)^{2}$
50. Determine the area of the shaded region in factored form.

a. $4(x+14)$
b. $(3 x+4)(x+14)$
c. $(3 x+14)(x+4)$
d. $(3 x-4)(x-14)$

Short Answer

62. Expand and simplify: $(7 t+4)(4 t-5)$
63. Factor: $34 n^{2}+n-8$
64. Factor: $10 z^{2}-35 z+25$
65. Find and correct the error(s) in this solution of factoring by decomposition.

$$
\begin{aligned}
50 y^{2}+45 y-26=50 y^{2}+ & 65 y-20 y-26 \\
& =5 y(10 y+13)+2(10 y+13) \\
& =(10 y+13)(5 y+2)
\end{aligned}
$$

66. Expand and simplify: $(7 x-8 y)(9 x+4 y-6)$
67. Find and correct the errors in this solution.
$(11 a+b)(2 a-13 b+8)$
$=13 a^{2}-143 a b+88 a-2 a b-13 b^{2}+8 b$
$=13 a^{2}-145 a b-13 b^{2}-88 a+8 b$
68. Factor: $36 a^{2}+84 a b+49 b^{2}$
69. Factor: $25 s^{2}-16 t^{2}$

Problem

70. Chris completes one lap of a go-cart track every 45 s. D'Arcy completes one lap of the same track every 60 s . Suppose Chris and D'Arcy cross the starting line at the same time. How many seconds will pass before they cross the starting line at the same time again? How many laps will Chris have completed in that time? How many laps will D'Arcy have completed in that time?
71. A cube has surface area $1734 \mathrm{~m}^{2}$. What is its volume?
72. A square has area $46.0 \mathrm{~cm}^{2}$. Determine the perimeter of the square to the nearest tenth of a centimetre.
73. Germaine wants to paint a cube with volume $6859 \mathrm{~m}^{3}$. Each tub of paint covers $55 \mathrm{~m}^{2}$. How many tubs of paint does Germaine need to paint the cube?
74. Calculate the volume of the largest possible sphere that can fit in a cube with volume $4096.0 \mathrm{~cm}^{3}$. Give the volume to the nearest tenth of a cubic centimetre. Explain your steps.
75. a) Here are a student's solutions for factoring polynomials. Identify the errors in each solution. Write a correct solution.
i) Factor: $15 s^{2}-35 s^{3}+5 s$

$$
\text { Solution: } 15 s^{2}-35 s^{3}+5 s=5 s\left(3 s-7 s^{2}\right)
$$

ii) Factor: $-22 h-32 h^{2}+16 h^{3}$

Solution: $-22 h-32 h^{2}+16 h^{3}=-2 h\left(11+16 h+8 h^{2}\right)$
b) What should the student have done to check her work?
76. Multiply this pair of binomials. Sketch and label a rectangle to illustrate the product. $(x+8)(x-5)$
77. A student is asked to find an integer to replace \square so that $x^{2}-x+\square$ can be factored. The student said the only possible integer is -56 . Is the student correct? Explain.
78. Find an integer to replace \square so that $x^{2}+\square x-24$ can be factored. How many integers can you find?
79. Factor. Check by expanding. $7 z^{2}-42 z+35$
80. Find the area of the rectangle.

81. Use decomposition to factor $25 y^{2}+20 y+4$. Explain your steps.
82. A student says that the expression $10 r^{3}-5 r^{2}-27 r-12$ represents the volume of this right rectangular prism. Is the student correct? How do you know?

83. Factor. Explain your steps.
$75 x^{2}-147 y^{2}$

Unit 3: Review for Final Exam Answer Section

MULTIPLE CHOICE

1.	ANS:	C PTS: 1	DIF: Easy
	REF:	3.1 Factors and Multiples of Whole N	Numbers LOC: 10.AN1
	TOP:	Algebra and Number K	KEY: Procedural Knowledge
2.	ANS:	D PTS:	DIF: Easy
	REF:	3.1 Factors and Multiples of Whole N	Numbers LOC: 10.AN1
	TOP:	Algebra and Number	KEY: Procedural Knowledge
3.	ANS:	A PTS: 1	DIF: Easy
	REF:	3.1 Factors and Multiples of Whole N	Numbers LOC: 10.AN1
	TOP:	Algebra and Number K	KEY: Procedural Knowledge
4.	ANS:	C PTS:	DIF: Moderate
	REF:	3.1 Factors and Multiples of Whole N	Numbers LOC: 10.AN1
	TOP:	Algebra and Number	KEY: Procedural Knowledge
5.	ANS:	D PTS: 1	DIF: Moderate
	REF:	3.1 Factors and Multiples of Whole N	Numbers LOC: 10.AN1
	TOP:	Algebra and Number	KEY: Procedural Knowledge
6.	ANS:	B PTS: 1	DIF: Moderate
	REF:	3.1 Factors and Multiples of Whole N	Numbers LOC: 10.AN1
	TOP:	Algebra and Number	KEY: Procedural Knowledge
7.	ANS:	B PTS: 1	DIF: Moderate
	REF:	3.2 Perfect Squares, Perfect Cubes, an	and Their Roots LOC: 10.AN1
	TOP:	Algebra and Number	KEY: Procedural Knowledge
8.	ANS:	A PTS: 1 D	DIF: Easy
	REF:	3.2 Perfect Squares, Perfect Cubes, an	and Their Roots LOC: 10.AN1
	TOP:	Algebra and Number	KEY: Procedural Knowledge
9.	ANS:	B PTS: 1 D	DIF: Easy
	REF:	3.2 Perfect Squares, Perfect Cubes, an	and Their Roots LOC: 10.AN1
	TOP:	Algebra and Number	KEY: Procedural Knowledge
10.	ANS:	D PTS: 1	DIF: Moderate
	REF:	3.2 Perfect Squares, Perfect Cubes, an	and Their Roots LOC: 10.AN1
	TOP:	Algebra and Number	KEY: Procedural Knowledge
11.	ANS:	A PTS: 1 D	DIF: Moderate
	REF:	3.2 Perfect Squares, Perfect Cubes, an	and Their Roots LOC: 10.AN1
	TOP:	Algebra and Number	KEY: Procedural Knowledge
12.	ANS	D PTS: 1	DIF: Easy
	REF:	3.3 Common Factors of a Polynomial	LOC: 10.AN5
	TOP:	Algebra and Number	KEY: Procedural Knowledge
13.	ANS	C PTS: 1 D	DIF: Easy
	REF:	3.3 Common Factors of a Polynomial	LOC: 10.AN5
	TOP:	Algebra and Number	KEY: Procedural Knowledge
14.	ANS	B PTS: 1	DIF: Moderate
	REF:	3.3 Common Factors of a Polynomial	LOC: 10.AN5
	TOP:	Algebra and Number	KEY: Procedural Knowledge
15.	ANS	A PTS: 1	DIF: Easy

REF: 3.3 Common Factors of a Polynomial
LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
16. ANS: B PTS: 1 DIF: Moderate

REF: 3.3 Common Factors of a Polynomial
TOP: Algebra and Number KEY: Procedural Knowledge
17. ANS: B PTS: 1 DIF: Easy

REF: 3.3 Common Factors of a Polynomial
TOP: Algebra and Number KEY: Procedural Knowledge
18. ANS: B PTS: 1 DIF: Moderate

REF: 3.3 Common Factors of a Polynomial
LOC: 10.AN5
TOP: Algebra and Number
KEY: Procedural Knowledge
19. ANS: C PTS: 1 DIF: Moderate

REF: 3.3 Common Factors of a Polynomial
LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
20. ANS: C PTS: 1 DIF: Easy

REF: 3.4 Modelling Trinomials as Binomial Products
LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
21. ANS: B PTS: 1 DIF: Easy

REF: 3.4 Modelling Trinomials as Binomial Products
LOC: 10.AN5
TOP: Algebra and Number
KEY: Procedural Knowledge
22. ANS: A PTS: 1 DIF: Easy

REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c \quad$ LOC: 10.AN4
TOP: Algebra and Number KEY: Procedural Knowledge
23. ANS: A PTS: 1 DIF: Easy

REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c \quad$ LOC: 10.AN4
TOP: Algebra and Number KEY: Procedural Knowledge
24. ANS: D PTS: 1 DIF: Moderate

REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c \quad$ LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
25. ANS: D

PTS: 1
DIF: Moderate
REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c$
LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
26. ANS: D PTS: 1 DIF: Moderate

REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c$
LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
27. ANS: B PTS: 1 DIF: Moderate

REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c$
LOC: 10.AN4
TOP: Algebra and Number
KEY: Procedural Knowledge
28. ANS: C

PTS: 1
DIF: Easy
LOC: 10.AN5
REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c$
KEY: Procedural Knowledge
29. ANS: B

PTS: 1
DIF: Easy
REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c$
LOC: 10.AN4
TOP: Algebra and Number
KEY: Procedural Knowledge
30. ANS: B PTS: 1 DIF: Moderate

REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c$
TOP: Algebra and Number KEY: Procedural Knowledge
31. ANS: A PTS: 1 DIF: Moderate

REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c$
LOC: 10.AN5

LOC: 10.AN4
51. ANS: D

LOC: 10.AN4
52. ANS: A

LOC: 10.AN4
53. ANS: D

LOC: 10.AN5
54. ANS: D

LOC: 10.AN5
55. ANS: D

LOC: 10.AN5
56. ANS: C

LOC: 10.AN5
57. ANS: A

LOC: 10.AN5
58. ANS: A

LOC: 10.AN5
59. ANS: A

LOC: 10.AN5
60. ANS: B

LOC: 10.AN5
61. ANS: B

TOP: Algebra and Number
PTS: 1 DIF: Moderate
TOP: Algebra and Number
PTS: 1 DIF: Moderate
TOP: Algebra and Number
PTS: 1 DIF: Easy
TOP: Algebra and Number
PTS: 1 DIF: Moderate
TOP: Algebra and Number
PTS: 1 DIF: Difficult

KEY: Procedural Knowledge
REF: 3.7 Multiplying Polynomials
KEY: Procedural Knowledge
REF: 3.7 Multiplying Polynomials
KEY: Procedural Knowledge
REF: 3.8 Factoring Special Polynomials

LOC: 10.AN4 | 10.AN5
TOP: Algebra and Number
KEY: Procedural Knowledge

SHORT ANSWER

62. ANS:
$28 t^{2}-19 t-20$
PTS: 1 DIF: Easy REF: 3.6 Polynomials of the Form $\mathrm{ax}^{\wedge} 2+\mathrm{bx}+\mathrm{c}$
LOC: 10.AN4 TOP: Algebra and Number KEY: Procedural Knowledge
63. ANS:
$(17 n-8)(2 n+1)$
PTS: 1 DIF: Easy REF: 3.6 Polynomials of the Form $\mathrm{ax}^{\wedge} 2+\mathrm{bx}+\mathrm{c}$
LOC: 10.AN5 TOP: Algebra and Number KEY: Procedural Knowledge
64. ANS:
$5(2 z-5)(z-1)$
PTS: 1 DIF: Moderate REF: 3.6 Polynomials of the Form $\mathrm{ax} \wedge 2+\mathrm{bx}+\mathrm{c}$
LOC: 10.AN5 TOP: Algebra and Number KEY: Procedural Knowledge
65. ANS:

$$
\begin{aligned}
50 y^{2}+45 y-26=50 y^{2}+ & 65 y-20 y-26 \\
& =5 y(10 y+13)-2(10 y+13) \\
& =(10 y+13)(5 y-2)
\end{aligned}
$$

PTS: 1 DIF: Moderate REF: 3.6 Polynomials of the Form $\mathrm{ax} \wedge 2+\mathrm{bx}+\mathrm{c}$

LOC: 10.AN5
TOP: Algebra and Number
KEY: Procedural Knowledge
66. ANS:
$63 x^{2}-44 x y-32 y^{2}-42 x+48 y$
PTS: 1 DIF: Moderate REF: 3.7 Multiplying Polynomials
LOC: 10.AN4 TOP: Algebra and Number KEY: Procedural Knowledge
67. ANS:
$(11 a+b)(2 a-13 b+8)$
$=22 a^{2}-143 a b+88 a+2 a b-13 b^{2}+8 b$
$=22 a^{2}-141 a b+88 a-13 b^{2}+8 b$
PTS: 1 DIF: Moderate REF: 3.7 Multiplying Polynomials
LOC: 10.AN4 TOP: Algebra and Number KEY: Procedural Knowledge
68. ANS:
$(6 a+7 b)^{2}$
PTS: 1 DIF: Easy REF: 3.8 Factoring Special Polynomials
LOC: 10.AN5
TOP: Algebra and Number
KEY: Procedural Knowledge
69. ANS:
$(5 s+4 t)(5 s-4 t)$

PTS: 1 DIF: Easy REF: 3.8 Factoring Special Polynomials
LOC: 10.AN5 TOP: Algebra and Number KEY: Procedural Knowledge

PROBLEM

70. ANS:

The time, in seconds, that will pass is the least common multiple of 40 and 50.
List the multiples of each number until the same multiple appears in both lists.
Multiples of 45 are: $45,90,135,180, \ldots$
Multiples of 60 are: 60,120,180, . .
The least common multiple of 45 and 60 is 180 .
So, 180 s will pass before Chris and D'Arcy cross the starting line at the same time again.
It takes 45 s for Chris to complete one lap. So, in 180 s , Chris will complete $\frac{180}{45}=4$ laps.
It takes 60 s for D'Arcy to complete one lap. So, in 180 s , D'Arcy will complete $\frac{180}{60}=3$ laps.

PTS: 1 DIF: Moderate REF: 3.1 Factors and Multiples of Whole Numbers
LOC: 10.AN1
TOP: Algebra and Number
KEY: Problem-Solving Skills
71. ANS:

To calculate the volume, first determine the edge length of the cube.
The surface area of a cube is the sum of the areas of its 6 congruent square faces.
So, the area, A, of one face is:
$A=\frac{1734}{6}$
$A=289$

The edge length, e, of the cube is the square root of the area of one square face.
$e=\sqrt{289}$
$e=17$

So, the volume, V, of the cube is the cube of its edge length.
$V=17^{3}$
$V=4913$
The volume of the cube is $4913 \mathrm{~m}^{3}$.

PTS: 1 DIF: Easy REF: 3.2 Perfect Squares, Perfect Cubes, and Their Roots
LOC: 10.AN1 TOP: Algebra and Number KEY: Problem-Solving Skills
72. ANS:

To calculate the perimeter, first determine the side length of the square.
The side length, s, of a square is equal to the square root of its area.
$s=\sqrt{46.0}$
$s=6.7823 .$.

The perimeter, P, of a square is 4 times its side length.
$P=4 s$
$P=4(6.7823 \ldots)$
$P=27.1293 .$.

The perimeter of the square is approximately 27.1 cm .
PTS: 1 DIF: Moderate REF: 3.2 Perfect Squares, Perfect Cubes, and Their Roots
LOC: 10.AN1 TOP: Algebra and Number KEY: Problem-Solving Skills
73. ANS:

To calculate how many tubs of paint are needed, first determine the surface area of the cube.

The edge length, e, of a cube is equal to the cube root of its volume.
$e=\sqrt[3]{6859}$
$e=19$

The surface area, $S A$, of a cube is the sum of the areas of its 6 congruent square faces.
$S A=6(19 \cdot 19)$
$S A=6(361)$
$S A=2166$

Calculate how many tubs of paint are needed:
$\frac{2166}{55}=39.3818 \ldots$
Germaine needs 40 tubs of paint to paint the cube.
PTS: 1 DIF: Moderate REF: 3.2 Perfect Squares, Perfect Cubes, and Their Roots
LOC: 10.AN1 TOP: Algebra and Number KEY: Problem-Solving Skills
74. ANS:

To determine the volume of the sphere, first determine the edge length of the cube.
The edge length, e, of a cube is equal to the cube root of its volume.
$e=\sqrt[3]{4096.0}$
$e=16$
The radius, r, of the largest sphere that will fit in the cube is one-half of the edge length of the cube.
$r=\frac{1}{2}(16)$
$r=8.0$

Use the formula for the volume of a sphere.
$V=\frac{4}{3} \pi r^{3}$
$V=\frac{4}{3} \pi(8.0)^{3}$
$V=2144.6605 \ldots$
The volume of the largest possible sphere that can fit in the cube is approximately $2144.7 \mathrm{~cm}^{3}$.
PTS: 1 DIF: Difficult REF: 3.2 Perfect Squares, Perfect Cubes, and Their Roots
LOC: 10.AN1 TOP: Algebra and Number
KEY: Communication | Problem-Solving Skills
75. ANS:
a) i) Correction:

$$
5 s\left(3 s-7 s^{2}+1\right)
$$

The student did not remove the common factor from the third term correctly. When the common factor is the same as the term, a factor of 1 remains. This must be written as a term in the factored polynomial.
ii) Correction:

$$
-2 h\left(11+16 h-8 h^{2}\right)
$$

When the student removed the common factor from the third term, she made a sign error. The sign should be negative, not positive.
b) The student should have expanded her solutions to check that the trinomial was the same as the original trinomial each time.

PTS: 1 DIF: Moderate REF: 3.3 Common Factors of a Polynomial LOC: 10.AN5 TOP: Algebra and Number
KEY: Communication | Problem-Solving Skills
76. ANS:

x	8	
\begin{tabular}{l\|}		
\hline		
\end{tabular}$\quad(x)(x)=x^{2}$	$(8)(x)=8 x$	
-5	$(-5)(x)=-5 x$	$(-5)(8)=-40$

$$
\begin{aligned}
(x+8)(x-5) & =x^{2}+(-5 x)+8 x+(-40) \\
& =\left(x^{2}+3 x-40\right)
\end{aligned}
$$

PTS: 1 DIF: Moderate REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c$
LOC: 10.AN4 TOP: Algebra and Number KEY: Problem-Solving Skills
77. ANS:

Replace \square with -56 :
Find two integers whose product is -56 and whose sum is -1 .
The integers are 7 and -8 .
So, $x^{2}-x-56=(x+7)(x-8)$
The student is not correct because -56 is not the only possible integer.
The product of any pair of integers whose sum is -1 will allow $x^{2}-x+\square$ to be factored.
For example, replace \square with -72 :
Find two integers whose product is -72 and whose sum is -1 .
The integers are 8 and -9 .
So, $x^{2}-x-72=(x+8)(x-9)$
There are an infinite number of integers that could replace \square so that $x^{2}-x+\square$ can be factored: $-2,-6,-12,-20,-30,-42,-56,-72, \ldots$

PTS: 1 DIF: Difficult REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c$
LOC: 10.AN4|10.AN5 TOP: Algebra and Number
KEY: Communication | Problem-Solving Skills
78. ANS:

Find two integers whose product is -24 .
Calculate the sum of each pair.

\boldsymbol{a}	\boldsymbol{b}	Product $\boldsymbol{a b}$	Sum $\boldsymbol{a}+\boldsymbol{b}$
6	-4	-24	2
-6	4	-24	-2
8	-3	-24	5
-8	3	-24	-5
12	-2	-24	10

-12	2	-24	-10
24	-1	-24	23
-24	1	-24	-23

From the table, the trinomials and their factors are:
$x^{2}+2 x-24=(x+6)(x-4)$
$x^{2}-2 x-24=(x-6)(x+4)$
$x^{2}+5 x-24=(x+8)(x-3)$
$x^{2}-5 x-24=(x-8)(x+3)$
$x^{2}+10 x-24=(x+12)(x-2)$
$x^{2}-10 x-24=(x-12)(x+2)$
$x^{2}+23 x-24=(x+24)(x-1)$
$x^{2}-23 x-24=(x-24)(x+1)$
The integers that can replace \square so that $x^{2}+\square x-24$ can be factored are: $2,-2,5,-5,10,-10,23$, and -23
PTS: 1 DIF: Difficult REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c$
LOC: 10.AN5 TOP: Algebra and Number KEY: Problem-Solving Skills
79. ANS:
$7 z^{2}-42 z+35$
The greatest common factor is 7 .
$7 z^{2}-42 z+35=7\left(z^{2}-6 z+5\right)$
Two numbers with a sum of -6 and a product of 5 are -1 and -5 .
So, $z^{2}-6 z+5=(z-1)(z-5)$
And, $7 z^{2}-42 z+35=7(z-1)(z-5)$
Check that the factors are correct. Multiply the factors.

$$
\begin{aligned}
7(z-1)(z-5) & =7\left(z^{2}-6 z+5\right) \\
& =7 z^{2}-42 z+35
\end{aligned}
$$

The trinomial is the same as the original trinomial, so the factors are correct.
PTS: 1 DIF: Difficult REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c$
LOC: 10.AN5 TOP: Algebra and Number KEY: Procedural Knowledge
80. ANS:

Use the formula for the area, A, of a rectangle.
$A=l \times w$
$A=(8 b-9)(3 b-2)$
Use the distributive property.
$A=8 b(3 b-2)+(-9)(3 b-2)$
$A=24 b^{2}-16 b-27 b+18$
$A=24 b^{2}-43 b+18$
The area of the rectangle is $24 b^{2}-43 b+18$ square units.
PTS: 1 DIF: Moderate REF: 3.6 Polynomials of the Form $a x \wedge 2+b x+c$
LOC: 10.AN5
TOP: Algebra and Number
KEY: Problem-Solving Skills
81. ANS:
$25 y^{2}+20 y+4$
Check for common factors; there are none.
The product of the coefficient of y^{2} and the constant term is: $25(4)=100$
Write $20 y$ as the sum of two terms whose coefficients have a product of 100 .

Factors of 100	Sum of Factors
1,100	$1+100=101$
2,50	$2+50=52$
4,25	$4+25=29$
5,20	$5+20=25$
10,10	$10+10=20$

The two coefficients are 10 and 10 , so write the trinomial $25 y^{2}+20 y+4$ as $25 y^{2}+10 y+10 y+4$.
Remove a common factor from the 1st pair of terms, and from the 2 nd pair of terms.
$25 y^{2}+10 y+10 y+4=5 y(5 y+2)+2(5 y+2)$
Each product has a common binomial factor.
$25 y^{2}+10 y+10 y+4=(5 y+2)(5 y+2)$
So, $25 y^{2}+20 y+4=(5 y+2)(5 y+2)$
PTS: 1 DIF: Difficult REF: 3.6 Polynomials of the Form $a x \wedge 2+b x+c$
LOC: 10.AN5 TOP: Algebra and Number
KEY: Communication | Problem-Solving Skills
82. ANS:

Use the formula for the volume, V, of a right rectangular prism:

$$
\begin{aligned}
& V=l w h \\
& V=(5 r-4)(2 r+3)(r+1) \\
& V=\left(10 r^{2}+15 r-8 r-12\right)(r+1) \\
& V=\left(10 r^{2}+7 r-12\right)(r+1) \\
& V=10 r^{2}(r)+10 r^{2}(1)+7 r(r)+7 r(1)-12(r)-12(1) \\
& V=10 r^{3}+17 r^{2}+-5 r-12
\end{aligned}
$$

Since this expression does not match the student's expression, the student is incorrect.
The expression $10 r^{3}+17 r^{2}+-5 r-12$ represents the volume of the right rectangular prism.
PTS: 1 DIF: Moderate REF: 3.7 Multiplying Polynomials
LOC: 10.AN4 TOP: Algebra and Number
KEY: Communication | Problem-Solving Skills
83. ANS:
$75 x^{2}-147 y^{2}$
As written, each term of the binomial is not a perfect square. But the terms have a common factor 3. Remove this common factor.
$75 x^{2}-147 y^{2}$
$=3\left(25 x^{2}-49 y^{2}\right)$
Write each term in the binomial as a perfect square.

$$
\begin{aligned}
3\left(25 x^{2}-49 y^{2}\right) & =3\left[(5 x)^{2}-(7 y)^{2}\right] \quad \text { Write these terms in binomial factors. } \\
& =3(5 x-7 y)(5 x+7 y)
\end{aligned}
$$

PTS: 1 DIF: Moderate REF: 3.8 Factoring Special Polynomials
LOC: 10.AN5 TOP: Algebra and Number
KEY: Communication | Problem-Solving Skills

