SECTION A: Place the LETTER of your response in the space at the right.

13 pts

1. Convert 160° to radians.

1.____

- A $\frac{9\pi}{16}$
- $B \qquad \frac{9\pi}{8}$
- $C \frac{8\pi}{9}$
- D $\frac{5\pi}{6}$
- 2. If θ is a standard position angle measuring 8 rad, in which quadrant does the terminal arm of θ lie?
- 2.____

- A Quadrant I
- B Quadrant II
- C Quadrant III
- D Quadrant IV
- 3. Which best approximates the value of $cot(200^{\circ}) + csc(3)$?

3.____

- A 0.3273
- B 1.7374
- C 9.8336
- D 21.8548
- - A Quadrant I
 - B Quadrant II
 - C Quadrant III
 - D Quadrant IV
- 5. Solve: csc(x) + 2 = 0, where $0 \le x \le \pi$

5._____

A
$$x = \frac{\pi}{3}$$

B
$$x = \frac{\pi}{6}$$

$$C x = \frac{\pi}{3}, \ x = \frac{2\pi}{3}$$

$$D x = \frac{\pi}{6}, x = \frac{5\pi}{6}$$

- 6. If β is an angle in standard position with $\csc(\beta) = -\frac{25}{7}$ and $\tan(\beta) > 0$, which is 6. true for $\sec(\beta)$ and the measure of β ?
 - A $\sec(\beta) = -\frac{25}{24}$, $\beta = 196^{\circ}$
 - B $\operatorname{sec}(\beta) = \frac{25}{24}, \quad \beta = 16^{\circ}$
 - C $\sec(\beta) = -\frac{25}{24}$, $\beta = 344^{\circ}$
 - D $\sec(\beta) = \frac{25}{24}, \quad \beta = 164^{\circ}$
- 7. Solve: $\csc^2(\alpha) = 1$, where $\alpha \in [0, 2\pi)$

7._____

- A $\alpha = \frac{\pi}{2}$
- B $\alpha = \frac{\pi}{2}$, $\alpha = \frac{3\pi}{2}$
- $C \quad \alpha = 0$
- D $\alpha = 0, \alpha = \pi$
- 8. A circle centered at the origin contains the point (-12, 16). What is the equation of 8._____ this circle?
 - $A \qquad x^2 + y^2 = 16$
 - B $x^2 + y^2 = 20$
 - C $x^2 + y^2 = 40$
 - D $x^2 + y^2 = 400$
- 9. What is the length of the arc intercepted by a central angle of 100° in a circle with 9._____ radius 4.6 cm?
 - A 1.28 cm
 - B 4.01 cm
 - C 6.92 cm
 - D 8.03 cm
- 10. Which pair of angles is coterminal?

10.____

- A $\frac{5\pi}{3}$ and $-\frac{5\pi}{3}$
- B $-\frac{\pi}{3}$ and $\frac{2\pi}{3}$
- C $\frac{5\pi}{6}$ and $-\frac{7\pi}{6}$
- D $\frac{2\pi}{3}$ and $\frac{4\pi}{3}$

11. What is the exact value of $tan(30^\circ) + cot(30^\circ)$

- A 1
- B $\frac{4\sqrt{3}}{3}$
- C $\frac{2\sqrt{3}}{3}$
- D $\sqrt{3}$
- 12. Which represents an angle measuring $\frac{7\pi}{3}$

12.____

A

В

C

D

13. Which of the following points lies on the unit circle?

13.____

$$A \qquad \left(\frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2}\right)$$

B
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$

C
$$\left(\frac{3}{5}, -\frac{4}{5}\right)$$

D
$$\left(\frac{2}{3}, \frac{1}{3}\right)$$

SECTION B: Answer ALL questions in the space provided. Full credit will only be awarded for correct solutions that include relevant workings.

The point (-4, 8) lies on the terminal arm of an angle, θ , in standard position. Sketch the angle in standard position. Determine the exact value, in simplest radical form, for all six trigonometric ratios of θ . Calculate the measure of the reference angle, and determine the measure of θ .

2. Determine the EXACT value, in simplest form, for $\frac{\sin\left(-\frac{4\pi}{3}\right) + \sec\left(\frac{\pi}{4}\right)}{\tan(-120^{\circ})}$ 4 pts

3. Determine the general solution to the equation below, where x is in degrees. 6 pts $6tan^2(x) - tan(x) - 15 = 0$

1	Calva	for v	where	π	- 1		2π
4.	DOLVE	101 x,	WHELE	-n	$\geq \lambda$	_	$\Delta I \iota$

$$sec^2(x) = 3\sec(x) - 2$$

6 pts

5. On a circle with radius 6 cm, two points are described as follows:

5 pts

Point A is determined by rotating the point (6,0) through an angle of 3 radians.

Point B is determined by rotating the point (0, -6) through an angle of -210°.

What is the length of the longer arc joining A and B?