The six derivatives of the primary three as well as the reciprocal trig ratios. Print these off so you can have them in front of you always.

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = (\sec x)^2$$

$$\frac{d}{dx}(\sec x) = \sec x \cdot \tan x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cdot \cot x$$

$$\frac{d}{dx}(\cot x) = -(\csc x)^2$$

There really are another 6 more with these if you consider the chain rule with them. It just an extension of the derivative of the outside times the derivative of the inside function.

If a function is in the form $y = \sin(u)$ where u = f(x) then $y' = \sin(u) \cdot u'$. Look at the next two examples to serve as a guide for all.

1)
$$y = \sin(x^{3})$$
 vs 2) $y = \sin^{3}(x) = (\sin x)^{3}$ note the difference

In 1) $u = x^{3}$

so $y^{\parallel} = \cos(u) \cdot u^{\parallel}$

therefore $y^{\parallel} = \cos(x^{3}) \cdot \frac{d}{dx}(x^{3}) = \cos(x^{3}) \cdot 3x^{2} = 3x^{2}\cos(x^{3})$ {DONE}

Watch how the second example is done.

$$y = \sin^{3} x = (\sin x)^{3} \quad u \text{ is now } \sin x$$

$$therefore \quad y^{1} = 3(\sin x)^{2} \bullet \frac{d}{dx}(\sin x) = 3\sin^{2} x \bullet \cos x \text{ Done}$$