The six derivatives of the primary three as well as the reciprocal trig ratios. Print these off so you can have them in front of you always.

$$
\begin{aligned}
& \frac{d}{d x}(\sin x)=\cos x \\
& \frac{d}{d x}(\cos x)=-\sin x \\
& \frac{d}{d x}(\tan x)=(\sec x)^{2} \\
& \frac{d}{d x}(\sec x)=\sec x \cdot \tan x \\
& \frac{d}{d x}(\csc x)=-\csc x \cdot \cot x \\
& \frac{d}{d x}(\cot x)=-(\csc x)^{2}
\end{aligned}
$$

There really are another 6 more with these if you consider the chain rule with them. It just an extension of the derivative of the outside times the derivative of the inside function.

If a function is in the form $y=\sin (u)$ where $u=f(x)$ then $y^{\prime}=\sin (u) \bullet u$.
Look at the next two examples to serve as a guide for all.

1) $y=\sin \left(x^{3}\right)$ vs 2) $y=\sin ^{3}(x)=(\sin x)^{3}$ note the difference

In 1) $u=x^{3}$
so $y^{\prime}=\cos (u) \bullet u^{\top}$
therefore $y^{I}=\cos \left(x^{\sqrt{3}}\right) \cdot \frac{d}{d x}\left(x^{\sqrt{3}}\right)=\cos \left(x^{\sqrt{3}}\right) \bullet 3 x^{\sqrt{2}}=3 x^{\sqrt{2}} \cos \left(x^{\sqrt{3}}\right) \quad\{D O N E\}$
Watch how the second example is done.
$y=\sin ^{3} x=(\sin x)^{3} \quad u$ is now $\sin x$
therefore $y^{\prime}=3(\sin x)^{2} \bullet \frac{d}{d x}(\sin x)=3 \sin ^{\sqrt{2}} x \bullet \cos x$ Done

