## Review of Terminology for the exam 1 Set Theory

Need to know
$\mathrm{N}=$ Natural numbers $=1,2,3,4,5, \ldots$
$\mathrm{W}=$ Whole Numbers $=0,1,2,3,4,5, \ldots$
$\mathrm{I}=$ Integers $\ldots-3,-2,-1,0,1,2,3, \ldots$
Prime numbers: divisors are 1 and itself....number has to be larger than 1

## Note: 1 IS NOT PRIME!.... 1 IS ODD

Even: divisible by 2
Odd: Even +1
Know these symbols
u,
$\subset$,
$\cap$,
$\varnothing$,
$\not \subset$,
$A \backslash B$,

Union (Or), subset, intersection (And), empty set, not a subset of, A only or A - B.
$\mathrm{B} \backslash \mathrm{A}=\mathrm{B}$ only
$\epsilon=$ element of
$\mathrm{n}(\mathrm{A})=$ the number in set A

Be able to shade (or know on a Venn Diagram) where the following are:

U

A
B
$A \backslash B, A \cap B, A \cap B \cap C, A \cup B, A^{\prime}, B^{\prime},(A \cup B)^{\prime},(A \cap B)^{\prime}$

The principle of inclusion and exclusion:

1) $\mathrm{n}(\mathrm{A} \cup \mathrm{B})=\mathrm{n}(\mathrm{A})+\mathrm{n}(\mathrm{B})-\mathrm{n}(\mathrm{A} \cap \mathrm{B})$
2) $n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(A \cap C)-b(B \cap C)+n(A \cap B \cap C)$
