Math 1201 Indepth Review for Midterm January 2015

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Convert 24 yd. to feet.
a. $\quad 288 \mathrm{ft}$.
b. 72 ft .
c. 2 ft .
d. 8 ft .
2. Convert 7 yd. to inches.
a. 21 in .
b. 252 in.
c. 43 in.
d. 84 in .
\qquad 3. Convert 100 in. to yards, feet, and inches.
a. 4 yd. 2 ft .2 in.
b. 2 yd. 2 ft .4 in .
c. 1 yd. 1 ft .4 in .
d. 4 yd. 0 ft .4 in .
\qquad 4. Nancy has 7 yd. of material. She wants to make curtains that are 18 in. wide. How many curtains can Nancy make?
a. 92
b. 14
c. 4
d. 1
\qquad 5. Which referent could you use for 1 m ?
a. The width of a computer keyboard
b. The length of a dinner fork
c. The length of your stride
d. The width of a classroom in your school

6 A). Which referent could you use for 1 cm ?
a. The depth of a kitchen sink
b. The length of a public swimming pool
c. The width of your shortest finger
d. The length of a walking stick

6B) Convert 180 cm to the nearest inch 6 C) 176 cm to ft., inches.
\qquad 7. Which referent could you use for 1 km ?
a. The distance equal to $2 \frac{1}{2}$ laps on an oval running track
b. The length of an iPod
c. The length of a snowboard
d. The length of your arm span
\qquad 8. Which referent could you use for 1 mm ?
a. The width of the head of an ant
b. The diameter of a beach ball
c. The distance between British Columbia and Manitoba
d. The length of a sheet of loose-leaf paper
\qquad 9. Which referent could you use for 1 yd.?
a. The width of your shortest finger
b. The length of a screwdriver
c. The height of the kitchen counter above the floor
d. The length of a football field
10. Which referent could you use for 1 in.?
a. The distance from where you are now to the nearest restaurant
b. The diameter of a bicycle wheel
c. The length of your calculator
d. The width of your largest toe
11. Which referent could you use for 1 mi .?
a. The length of a salmon
b. The height of a grizzly bear standing on its hind legs
c. The distance equal to 4 laps on an oval running track
d. The thickness of a sheet of loose-leaf paper
12. Which SI unit is most appropriate for measuring the width of your desk?
a. Kilometres
b. Centimetres
c. Metres
d. Millimetres
13. Which SI unit is most appropriate for measuring the distance between your school and the nearest airport?
a. Centimetres
b. Metres
c. Millimetres
d. Kilometres
14. Which imperial unit is most appropriate for measuring the length of a hockey rink?
a. Miles
b. Feet
c. Yards
d. Inches
15. Which imperial unit is most appropriate for measuring the width of a snowboard?
a. Miles
b. Inches
c. Feet
d. Yards
16. Determine the surface area of this regular tetrahedron to the nearest square centimetre.

a. $29 \mathrm{~cm}^{2}$
b. $\quad 116 \mathrm{~cm}^{2}$
c. $58 \mathrm{~cm}^{2}$
d. $44 \mathrm{~cm}^{2}$
17. Determine the surface area of this right cone to the nearest square metre.

a. $74 \mathrm{~m}^{2}$
b. $55 \mathrm{~m}^{2}$
c. $75 \mathrm{~m}^{2}$
d. $83 \mathrm{~m}^{2}$
18. The lateral area of a cone is $198.6 \mathrm{~cm}^{2}$. The diameter of the cone is 10.2 cm . Determine the height of the cone to the nearest tenth of a centimetre.
a. 8.8 cm
b. $\quad 11.3 \mathrm{~cm}$
c. 8.0 cm
d. $\quad 12.4 \mathrm{~cm}$
19. A right pyramid has a square base with side length 12 m and a height of 7 m . Calculate the surface area of the pyramid to the nearest square metre.
a. $312 \mathrm{~m}^{2}$
b. $443 \mathrm{~m}^{2}$
c. $664 \mathrm{~m}^{2}$
d. $365 \mathrm{~m}^{2}$
20. The surface area of a right cone is $400.2 \mathrm{~m}^{2}$. The radius of the cone is 6.0 m . Determine the height of the cone to the nearest metre.
a. 14 m
b. 16 m
c. 15 m
d. 13 m
21. The radius of a volleyball is approximately 11 cm . Determine the surface area of a volleyball to the nearest square centimetre.
a. $6082 \mathrm{~cm}^{2}$
b. $1521 \mathrm{~cm}^{2}$
c. $380 \mathrm{~cm}^{2}$
d. $5575 \mathrm{~cm}^{2}$
22. The surface area of a tennis ball is approximately 23 square inches. What is the diameter of the tennis ball to the nearest inch?
a. 3 in.
b. 1 in.
c. 4 in.
d. 6 in.
23. A sphere has a surface area of $6.4 \mathrm{~m}^{2}$. What is the diameter of the sphere to the nearest tenth of a metre?
a. $\quad 1.4 \mathrm{~m}$
b. 2.0 m
c. 2.3 m
d. 0.7 m
24. Determine the volume of this composite object, which is a right square prism and a right rectangular pyramid, to the nearest tenth of a cubic metre.

a. $\quad 85.3 \mathrm{~m}^{3}$
b. $\quad 107.7 \mathrm{~m}^{3}$
c. $90.7 \mathrm{~m}^{3}$
d. $514.8 \mathrm{~m}^{3}$
25. Determine the surface area of this composite object, which is a right cylinder and a hemisphere, to the nearest tenth of a square metre.

a. $\quad 200.3 \mathrm{~m}^{2}$
b. $\quad 180.6 \mathrm{~m}^{2}$
c. $141.4 \mathrm{~m}^{2}$
d. $\quad 161.0 \mathrm{~m}^{2}$
26. Write the prime factorization of 630 .
a. $2 \cdot 5 \cdot 7 \cdot 9$
b. $2 \cdot 5 \cdot 63$
c. $2 \cdot 3^{2} \cdot 5 \cdot 7$
d. $2 \cdot 3 \cdot 5 \cdot 7$
27. Determine the greatest common factor of 56 and 88 .
a. 77
b. 616
c. 7
d. 8
28. Determine the greatest common factor of 280 and 360 .
a. 9
b. 63
c. 2520
d. 40
29. Determine the least common multiple of 10 and 22 .
a. 2
b. 55
c. 220
d. 110
30. Determine the least common multiple of 78 and 102.
a. 1326
b. 6
c. 2652
d. 7956
31. Determine the square root of 250000 .
a. 100
b. 63
c. 500
d. 200
32. Determine the cube root of 42875 .
a. 1225
b. 4763.9
c. 207.1
d. 35
33. A cube has volume $15625 \mathrm{~cm}^{3}$. What is the surface area of the cube?
a. $\quad 132893.3 \mathrm{~cm}^{2}$
b. $3750 \mathrm{~cm}^{2}$
c. $25 \mathrm{~cm}^{2}$
d. $\quad 10416.7 \mathrm{~cm}^{2}$
34. Determine the perfect cube whole number closest to 19479.
a. 19600
b. 19683
c. 19476
d. 17576
35. Determine the side length of this square.

a. 63 cm
b. $\quad 15.83 \mathrm{~cm}$
c. 992.25 cm
d. 441 cm
36. Determine the edge length of this cube.

a. $\quad 301.87 \mathrm{~cm}$
b. 45 cm
c. $\quad 6.71 \mathrm{~cm}$
d. 3375 cm
65. Identify the index of $\sqrt[3]{2^{7}}$.
a. 2^{7}
b. 3
c. 7
d. 2
66. Identify the radicand of $\sqrt[6]{4^{8}}$.
a. 4
b. 4^{8}
c. 6
d. 8
67. Evaluate $\sqrt[4]{16}$.
a. 2
b. 2.6
c. 16
d. 1.41
68. Evaluate $\sqrt[3]{-64}$.
a. -4
b. impossible
c. -12.8
d. 4
69. Evaluate $\sqrt[4]{\frac{256}{625}}$.
a. $\frac{4}{5}$
b. $\frac{4}{25}$
c. $\frac{16}{25}$
d. $\frac{16}{5}$
70. Which of these numbers is rational?

$$
\sqrt{\frac{4}{169}}, \sqrt{48}, \sqrt[3]{-16}, \sqrt{8.1}
$$

a. $\sqrt{48}$
b. $\sqrt{8.1}$
c. $\sqrt[3]{-16}$
d. $\sqrt{\frac{4}{169}}$
71. Which of these numbers is irrational?
$\sqrt{48}, \sqrt[3]{216}, \sqrt{\frac{49}{16}},-68$
a. -68
b. $\sqrt{48}$
c. $\sqrt[3]{216}$
d. $\sqrt{\frac{49}{16}}$
72. Order these numbers from greatest to least: $\sqrt[3]{99}, \sqrt{170}, \sqrt[3]{3050}, \sqrt{18}, \sqrt[3]{51}$
a. $\sqrt{170}, \sqrt[3]{99}, \sqrt[3]{3050}, \sqrt{18}, \sqrt[3]{51}$
b. $\sqrt[3]{3050}, \sqrt{18}, \sqrt[3]{51}, \sqrt{170}, \sqrt[3]{99}$
c. $\sqrt[3]{3050}, \sqrt{170}, \sqrt[3]{99}, \sqrt{18}, \sqrt[3]{51}$
d. $\sqrt[3]{3050}, \sqrt{170}, \sqrt{18}, \sqrt[3]{51}, \sqrt[3]{99}$
73. Order these numbers from least to greatest: $\sqrt[3]{75}, \sqrt{14}, \sqrt[3]{100}, \sqrt{17}, \sqrt[3]{30}$
a. $\sqrt[3]{75}, \sqrt[3]{100}, \sqrt{14}, \sqrt[3]{30}, \sqrt{17}$
b. $\sqrt[3]{30}, \sqrt{14}, \sqrt{17}, \sqrt[3]{75}, \sqrt[3]{100}$
c. $\sqrt[3]{100}, \sqrt[3]{30}, \sqrt{14}, \sqrt{17}, \sqrt[3]{75}$
d. $\sqrt{17}, \sqrt[3]{75}, \sqrt[3]{100}, \sqrt{14}, \sqrt[3]{30}$
74. Which of these numbers is an integer, but not a whole number?
$-9,0,1, \sqrt{5}$
a. 0
b. -9
c. $\sqrt{5}$
d. 1
\qquad 75. Which of these numbers is a natural number?
$9,0,-1,1 . \overline{8}$
a. 9
b. 0
c. $1 . \overline{8}$
d. -1
76. To which set(s) of numbers does $-\sqrt{25}$ belong?

I	Natural
II	Integer
III	Rational
IV	Irrational

a. II and III only
b. III only
c. I, II and III only
d. IV only
77. Write $\sqrt{108}$ in simplest form.
a. $3 \sqrt{12}$
b. $6 \sqrt{ } 3$
c. $36 \sqrt{3}$
d. $3 \sqrt{6}$
78. Write $\sqrt[3]{80}$ in simplest form.
a. $10 \sqrt[3]{2}$
b. $2 \sqrt[3]{10}$
c. $8 \sqrt[3]{10}$
d. $4 \sqrt[3]{5}$
79. Write $\sqrt[4]{405}$ in simplest form.
a. $3 \sqrt[4]{5}$
b. $81 \sqrt[4]{5}$
c. $9 \sqrt[4]{5}$
d. $5 \sqrt[4]{3}$
80. Write $6 \sqrt{ } 5$ as an entire radical.
a. $\sqrt{30}$
b. $\sqrt{150}$
c. $\sqrt{180}$
d. $\sqrt{900}$
81. Write $3 \sqrt[3]{4}$ as an entire radical.
a. $\sqrt[3]{108}$
b. $\sqrt[3]{144}$
c. $\sqrt[3]{36}$
d. $\sqrt[3]{192}$
82. Evaluate $64^{\frac{1}{3}}$ without using a calculator.
a. 8
b. 4
c. -4
d. $\quad 21 \begin{aligned} & 1 \\ & 3\end{aligned}$
83. Evaluate $(-27)^{\frac{1}{3}}$ without using a calculator.
a. -3
b. 3
c. -9
d. does not exist
84. Write $42^{\frac{5}{4}}$ as a radical.
a. $\sqrt[5]{42^{4}}$
b. $(\sqrt[4]{42})^{5}$
c. $\sqrt[125]{42}$
d. $(\sqrt[5]{42})^{4}$
_ 85. Write $\sqrt{\left(\frac{3}{4}\right)^{9}}$ as a power.
a. $\left(\frac{3}{4}\right)^{-\frac{9}{2}}$
b. $\left(\frac{3}{4}\right)^{\frac{9}{2}}$
c. $\left(\frac{4}{3}\right)^{-\frac{2}{9}}$
d. $\left(\frac{3}{4}\right)^{\frac{2}{9}}$
86. A cube has volume 1200 cubic inches. Write the edge length of the cube as a power.
a. $\sqrt[3]{1200} \mathrm{in}$.
b. $1200^{\frac{1}{3}}$ in.
c. $1200^{3} \mathrm{in}$.
d. $1^{1200^{-3}} \quad$ in

BACK to UNIT II
87. Evaluate 4^{25}.
a. 18
b. 32
c. 1.741 101...
d. 40
88. Evaluate $\left(\frac{125}{8}\right)^{\frac{4}{3}}$.
a. $\frac{625}{4}$
b. $7.858958 \ldots$
c. $\frac{625}{16}$
d. $\frac{625}{8}$
89. Evaluate 3^{-2} without using a calculator.
a. $\sqrt{ } 3$
b. 1
c. 1
d. 9
90. Evaluate $\left(\frac{2}{3}\right)^{-3}$.
a. $-\frac{27}{8}$
b. $-\frac{8}{27}$
c. $\frac{27}{8}$
d. $\quad-\frac{1}{6}$
91. Evaluate $64^{-\frac{4}{3}}$ without using a calculator.
a. 1
b. 3
c. $\begin{gathered}1 \\ - \\ 256\end{gathered}$
d. -256
256
256
92. Which power with a negative exponent is equivalent to $\frac{125}{512}$?
a. $\left(\frac{8}{5}\right)^{-3}$
b. $\left(\frac{5}{8}\right)^{-2}$
c. $\left(\frac{8}{5}\right)^{-2}$
d. $\left(\frac{5}{8}\right)^{-3}$
93. Simplify $\frac{\left(3.5^{-6}\right)\left(3.5^{5}\right)}{3.5^{-1}}$ by writing as a single power.
a. $\quad 3.5^{0}$
b. 3.5^{-29}
c. 3.5^{0}
d. 3.5^{-2}
94. Simplify $\frac{12 p^{3} q^{-7}}{15 p q^{6}}$. Write using powers with positive exponents.
a. $\frac{4 p^{3}}{5 q^{13}}$
b. $\frac{p^{2}}{3 q^{13}}$
c. $\frac{4 p^{2}}{5 q}$
d. $\frac{4 p^{2}}{5 q^{13}}$

- 95. Simplify $\left(64 a^{12} b^{15}\right)^{\frac{2}{3}}$.
a. $16 a^{8} b^{10}$
b. $16 a^{18} b^{10}$
c. $64 a^{8} b^{10}$
d. $16 a^{8} b^{25}$
_- 96. Simplify $\left(\frac{36 x^{4} y^{3}}{4 x^{8} y^{-1}}\right)^{\frac{1}{2}}$.
a. $3 x^{2} y^{2}$
b. $\frac{3 y^{2}}{x^{2}}$
c. $\frac{3 y}{x^{2}}$
d. $\frac{3 y^{2}}{x^{6}}$
- 97. Simplify $\frac{\left(m^{3} n^{-3}\right)^{-1}}{\left(m^{-2} n\right)^{4}}$.
a. $\frac{m^{5}}{n^{7}}$
b. $\frac{m^{5}}{n}$
c. $\frac{m^{11}}{n}$
d. $\frac{m^{11}}{n^{7}}$

98. Simplify $\left(\frac{w^{-15} y^{12}}{-64 x^{3}}\right)^{-\frac{1}{3}}$.
a. $-\frac{w^{5} x}{4 y^{4}}$
b. $-\frac{4 y^{4}}{w^{5} x}$
c. $-\frac{y^{4}}{4 w^{5} x}$
d. $-\frac{4 w^{5} x}{y^{4}}$

Unit III
37. Factor the binomial $44 a+99 a^{2}$.
a. $a(44+99 a)$
b. $11\left(4 a+9 a^{2}\right)$
c. $11 a(4+9 a)$
d. $22 a(2+9 a)$
38. Factor the binomial $15 y^{2}-48 y$.
a. $3\left(5 y^{2}-16 y\right)$
b. $3 y(5 y-16 y)$
c. $y(15 y-48)$
d. $3 y(5 y-16)$
39. Factor the trinomial $-24 c^{3} d-40 c^{2} d^{2}-32 c d^{3}$.
a. $-8 c d\left(3 c^{2}-5 c d-4 d^{2}\right)$
b. $8 c d\left(3 c^{2}+5 c d+4 d^{2}\right)$
c. $8 c d\left(-3 c^{2}+5 c d+4 d^{2}\right)$
d. $-8 c d\left(3 c^{2}+5 c d+4 d^{2}\right)$
40. Factor the binomial $-10 m^{2}-40 m^{4}$.
a. $-10 m^{2}\left(1+4 m^{2}\right)$
b. $-10 m^{2}\left(4 m^{2}\right)$
c. $-10\left(m^{2}+4 m^{4}\right)$
d. $-5 m^{2}\left(2+8 m^{2}\right)$
41. Simplify the expression $y^{2}+8 y-6-9 y^{2}-24 y-26$, then factor.
a. $-8\left(y^{2}-2 y-4\right)$
b. $-8\left(y^{2}+2 y+4\right)$
c. $-4\left(2 y^{2}+4 y+8\right)$
d. $-4\left(2 y^{2}+4 y+1\right)$
42. Identify the greatest common factor of the terms in the trinomial $6 s^{3} t^{4}+12 s^{4} t^{2}-15 s^{2} t^{3}$.
a. $6 s^{2} t^{2}$
b. $3 s^{2} t^{2}$
c. $3 s^{2} t^{3}$
d. $3 s^{3} t^{2}$
43. Which of the following trinomials can be represented by a rectangle? Use algebra tiles to check.
a. $y^{2}+3 y+12$
b. $y^{2}+12 y+5$
c. $y^{2}+8 y+15$
d. $y^{2}+14 y+3$
44. Expand and simplify: $(p+3)(p-7)$
a. $p^{2}-4 p-21$
b. $p^{2}-10 p-21$
c. $p^{2}+10 p-21$
d. $p^{2}+4 p-21$
45. Expand and simplify: $(4-r)(7-r)$
a. $28-11 r+r^{2}$
b. $28-3 r+r^{2}$
c. $28+3 r+r^{2}$
d. $28+11 r+r^{2}$
46. Factor: $t^{2}+9 t-36$
a. $(t-2)(t+18)$
b. $(t+2)(t-18)$
c. $(t+12)(t-3)$
d. $(t-12)(t+3)$
47. Factor: $v^{2}-13 v+36$
a. $(v+3)(v+12)$
b. $(v-3)(v-12)$
c. $(v-4)(v-9)$
d. $(v+4)(v+9)$
48. Factor: $-24-2 x+x^{2}$
a. $(6+x)(-4+x)$
b. $(3+x)(-8+x)$
c. $(-3+x)(8+x)$
d. $(-6+x)(4+x)$
49. Factor: $-3 b^{2}+15 b+18$
a. $-3(b-2)(b+3)$
b. $-3(b+2)(b-3)$
c. $-3(b-1)(b+6)$
d. $-3(b+1)(b-6)$
50. Factor: $c^{2}-4 c-117$
a. $(c-9)(c+13)$
b. $(c-3)(c+39)$
c. $(c+9)(c-13)$
d. $(c+3)(c-39)$
51. Which multiplication sentence does this set of algebra tiles represent?

c. $\left(2 x^{2}+2 x\right)\left(2 x^{2}+2 x\right)$
b. $\left(2 x^{2}+2\right)\left(2 x^{2}+2\right)$
d. $(2 x+2)(2 x+2)$
52. Expand and simplify: $(6 p+3)(5 p-6)$
a. $30 p^{2}+21 p-18$
b. $30 p^{2}-21 p-18$
c. $30 p^{2}+51 p-18$
d. $30 p^{2}-51 p-18$
53. Factor: $25 x^{2}+58 x+16$
a. $(25 x+4)(x+4)$
b. $(25 x+8)(x+2)$
c. $(5 x+4)(5 x+4)$
d. $(5 x+8)(5 x+2)$
54. Factor: $7 n^{2}+104 n-15$
a. $(7 n-1)(n+15)$
b. $(7 n+1)(n-15)$
c. $(7 n+15)(n-1)$
d. $(7 n-15)(n+1)$
55. Expand and simplify: $(8 h+3)\left(7 h^{2}-4 h+1\right)$
a. $56 h^{3}-53 h^{2}-20 h+3$
b. $56 h^{3}+11 h^{2}-12 h+3$
c. $56 h^{3}-11 h^{2}-4 h+3$
d. $56 h^{3}-32 h^{2}+8 h+3$
\qquad 56. Expand and simplify: $(5 m-3 n)^{2}$
a. $25 m^{2}-9 n^{2}$
b. $25 m^{2}-15 m n+9 n^{2}$
c. $25 m^{2}-30 m n+9 n^{2}$
d. $25 m^{2}+9 n^{2}$
57. Expand and simplify: $(4 s+9 t)(5 s-4 t-3)$
a. $20 s^{2}+29 s t-12 s-36 t^{2}-27 t$
b. $20 s^{2}+29 s t-12 s+36 t^{2}-27 t$
c. $20 s^{2}+29 s t+12 s-36 t^{2}+27 t$
d. $20 s^{2}+61 s t-12 s-36 t^{2}-27 t$
\qquad 58. Which polynomial, written in simplified form, represents the area of this rectangle?

a. $8 x^{2}-36 x y-20 y^{2}$
b. $8 x^{2}+22 x y-20 y^{2}$
c. $16 x^{2}+72 x y-40 y^{2}$
d. $8 x^{2}+36 x y-20 y^{2}$
59. Each shape is a rectangle. Write a polynomial, in simplified form, to represent the area of the shaded region.

a. $5 x^{2}+31 x+66$
b. $5 x^{2}+37 x+30$
c. $5 x^{2}+31 x+30$
d. $5 x^{2}+37 x+66$
60. Factor: $121 a^{2}+110 a+25$
a. $(11 a+5)(11 a-5)$
b. $(121 a+5)(a+5)$
c. $(11 a-5)^{2}$
d. $(11 a+5)^{2}$
61. Factor: $16 p^{2}-81 q^{2}$
a. $(4 p-9 q)^{2}$
b. $(4 p+9 q)^{2}$
c. $(16 p-9 q)(p-9 q)$
d. $(4 p+9 q)(4 p-9 q)$
62. Find an integer to replace \square so that this trinomial is a perfect square.

$$
\square x^{2}+42 x y+9 y^{2}
$$

a. 7
b. 14
c. 49
d. 196
63. Find an integer to replace \square so that this trinomial is a perfect square.

$$
64 v^{2}-\square v w+81 w^{2}
$$

a. 144
b. 648
c. 72
d. 18
64. Factor: $162-2 w^{4}$
a. $\left(9-w^{2}\right)\left(18-w^{2}\right)$
b. $2\left(9+w^{2}\right)(3+w)(3-w)$
c. $2\left(9-w^{2}\right)^{2}$
d. $2\left(9+w^{2}\right)^{2}$

Short and Long Answer

99. Determine the surface area of this sphere to the nearest square centimetre. Determine its volume to the nearest cubic centimetre.

100. Write an expression for the width of this rectangle.

101. Find and correct the errors in this factorization.

$$
w^{2}-2 w-80=(w-8)(w+10)
$$

102. Factor: $22 n^{2}+n-5$
103. Factor: $14 z^{2}-49 z+35$
104. Find and correct the errors in this solution.
$(11 a+b)(2 a-13 b+4)$
$=13 a^{2}-143 a b+44 a-2 a b-13 b^{2}+4 b$
$=13 a^{2}-145 a b-13 b^{2}-44 a+4 b$
105. Write $\sqrt{1694}$ in simplest form.
106. Simplify $\frac{-3 a^{-3} b^{-7} c^{-6}}{12 a^{-6} b^{-3} c^{-3}}$. Write using powers with positive exponents.
107. Explain how to convert a measurement of 20000 ft . to miles, yards, and feet.
108. Determine the surface area of this composite object, which is a right square prism and a right square pyramid, to the nearest square foot. Explain your answer.

109. The base of this cone is to be glued to the circular face of the hemisphere. Calculate the surface area of the composite object formed, to the nearest square inch.

110. Find the area of the rectangle.

111. Factor $5 x^{2}+17 x+6$. Explain your steps.
112. Factor. Explain your steps.
$196 x^{2}-16 y^{2}$
113. A square has an area of $1134 \mathrm{~m}^{2}$. Determine the perimeter of the square. Write the answer as a radical in simplest form.
114. Identify any errors in each simplification. Write a correct solution.
a) $\left(x^{-6} y^{6}\right)\left(x^{-\frac{1}{6}} y^{5}\right)=x^{-6} \cdot x^{\frac{1}{6}} \cdot y^{6} \cdot y^{5}$

$$
=x^{1} \cdot y^{30}
$$

$$
=x y^{30}
$$

b) $\left(\frac{2 m^{\frac{1}{4}}}{n^{4}}\right)^{-4}=-\frac{8 m^{-1}}{n^{0}}$

$$
=-8 m^{-1}
$$

$=\frac{1}{8 m}$

hh

Answer Section

MULTIPLE CHOICE

1. ANS: B

LOC: 10.M2
2. ANS: B

LOC: 10.M2
3. ANS: B

LOC: 10.M2
4. ANS: B

LOC: 10.M2
5. ANS: C

LOC: 10.M1
6. ANS: C

LOC: 10.M1
7. ANS: A

LOC: 10.M1
8. ANS: A

LOC: 10.M1
9. ANS: C

LOC: 10.M1
10. ANS: D

LOC: 10.M1
11. ANS: C

LOC: 10.M1
12. ANS: B

LOC: 10.M1
13. ANS: D

LOC: 10.M1
14. ANS: C

LOC: 10.M1
15. ANS: B

LOC: 10.M1
16. ANS: C

REF: 1.4 Surface Areas of Right Pyramids and Right Cones
TOP: Measurement
17. ANS: D

REF: 1.4 Surface Areas of Right Pyramids and Right Cones
LOC: 10.M3
TOP: Measurement KEY: Procedural Knowledge
18. ANS: B PTS: 1 DIF: Moderate

REF: 1.4 Surface Areas of Right Pyramids and Right Cones LOC: 10.M3
TOP: Measurement KEY: Procedural Knowledge
19. ANS: D PTS: 1 DIF: Moderate

REF: 1.4 Surface Areas of Right Pyramids and Right Cones LOC: 10.M3
TOP: Measurement KEY: Procedural Knowledge

REF: 3.2 Perfect Squares, Perfect Cubes, and Their Roots LOC: 10.AN1
TOP: Algebra and Number KEY: Procedural Knowledge
37. ANS: C PTS: 1 DIF: Easy

REF: 3.3 Common Factors of a Polynomial LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
38. ANS: D PTS: 1 DIF: Easy

REF: 3.3 Common Factors of a Polynomial LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
39. ANS: D PTS: 1 DIF: Moderate

REF: 3.3 Common Factors of a Polynomial
LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
40. ANS: A PTS: 1 DIF: Easy

REF: 3.3 Common Factors of a Polynomial LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
41. ANS: B PTS: 1 DIF: Moderate

REF: 3.3 Common Factors of a Polynomial LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
42. ANS: B PTS: 1 DIF: Easy

REF: 3.3 Common Factors of a Polynomial
LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
43. ANS: C PTS: 1 DIF: Easy

REF: 3.4 Modelling Trinomials as Binomial Products
LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
44. ANS: A PTS: 1 DIF: Easy

REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c \quad$ LOC: 10.AN4
TOP: Algebra and Number KEY: Procedural Knowledge
45. ANS: A PTS: 1 DIF: Easy

REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c \quad$ LOC: 10.AN4
TOP: Algebra and Number KEY: Procedural Knowledge
46. ANS: C PTS: 1 DIF: Easy

REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c$
LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
47. ANS: C PTS: 1 DIF: Easy

REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c \quad$ LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
48. ANS: D PTS: 1 DIF: Moderate

REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c$
LOC: 10.AN5
TOP: Algebra and Number
KEY: Procedural Knowledge
49. ANS: D PTS: 1 DIF: Moderate

REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c \quad$ LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
50. ANS: C

PTS: 1
DIF: Easy
REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c$
LOC: 10.AN5
TOP: Algebra and Number
KEY: Procedural Knowledge
51. ANS: D PTS: 1 DIF: Easy

REF: 3.6 Polynomials of the Form $\mathrm{ax}^{\wedge} 2+\mathrm{bx}+\mathrm{c} \quad$ LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
52. ANS: B PTS: 1 DIF: Easy

REF: 3.6 Polynomials of the Form $a x^{\wedge} 2+b x+c \quad$ LOC: 10.AN4

TOP: Algebra and Number KEY: Procedural Knowledge
53. ANS: B PTS: 1 DIF: Easy

REF: 3.6 Polynomials of the Form $a x^{\wedge} 2+b x+c \quad$ LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
54. ANS: A PTS: 1 DIF: Easy

REF: 3.6 Polynomials of the Form $a x^{\wedge} 2+b x+c \quad$ LOC: 10.AN5
TOP: Algebra and Number KEY: Procedural Knowledge
55. ANS: C

LOC: 10.AN4
56. ANS: C

LOC: 10.AN4
57. ANS: A

LOC: 10.AN4
58. ANS: D

LOC: 10.AN4
59. ANS: A

LOC: 10.AN4
60. ANS: D

LOC: 10.AN5
61. ANS: D

LOC: 10.AN5
62. ANS: C

LOC: 10.AN5
63. ANS: A

LOC: 10.AN5
64. ANS: B

LOC: 10.AN5
65. ANS: B

LOC: 10.AN2
66. ANS: B

LOC: 10.AN2
67. ANS: A

LOC: 10.AN2
68. ANS: A

LOC: 10.AN2
69. ANS: A

LOC: 10.AN2
70. ANS: D

LOC: 10.AN2
71. ANS: B

LOC: 10.AN2
72. ANS: C

LOC: 10.AN2
73. ANS: B

LOC: 10.AN2
74. ANS: B

LOC: 10.AN2
75. ANS: A

LOC: 10.AN2

PTS: 1 DIF: Easy
TOP: Algebra and Number
PTS: 1 DIF: Easy
TOP: Algebra and Number
PTS: 1 DIF: Easy
TOP: Algebra and Number
PTS: 1 DIF: Moderate
TOP: Algebra and Number
PTS: 1 DIF: Moderate
TOP: Algebra and Number
PTS: 1 DIF: Easy
TOP: Algebra and Number
PTS: 1 DIF: Moderate
TOP: Algebra and Number
PTS: 1 DIF: Easy
TOP: Algebra and Number
PTS: 1 DIF: Moderate
TOP: Algebra and Number
PTS: 1 DIF: Moderate
TOP: Algebra and Number
PTS: 1 DIF: Easy
TOP: Algebra and Number
PTS: 1 DIF: Easy
TOP: Algebra and Number

REF: 3.7 Multiplying Polynomials
KEY: Procedural Knowledge
REF: 3.8 Factoring Special Polynomials
KEY: Procedural Knowledge
REF: 4.1 Estimating Roots
KEY: Procedural Knowledge
REF: 4.1 Estimating Roots
KEY: Procedural Knowledge
REF: 4.1 Estimating Roots
KEY: Conceptual Understanding
REF: 4.1 Estimating Roots
KEY: Conceptual Understanding
REF: 4.1 Estimating Roots
KEY: Conceptual Understanding
REF: 4.2 Irrational Numbers
KEY: Procedural Knowledge
REF: 4.2 Irrational Numbers
KEY: Procedural Knowledge
REF: 4.2 Irrational Numbers
KEY: Conceptual Understanding
REF: 4.2 Irrational Numbers
KEY: Conceptual Understanding
REF: 4.2 Irrational Numbers
KEY: Procedural Knowledge
REF: 4.2 Irrational Numbers
KEY: Procedural Knowledge

95. ANS: A

LOC: 10.AN3
96. ANS: B

LOC: 10.AN3
97. ANS: B

LOC: 10.AN3
98. ANS: D

LOC: 10.AN3

PTS: 1 DIF: Easy
TOP: Algebra and Number
PTS: 1 DIF: Moderate
TOP: Algebra and Number
PTS: 1 DIF: Moderate
TOP: Algebra and Number
DIF: Moderate
TOP: Algebra and Number

REF: 4.6 Applying the Exponent Laws
KEY: Conceptual Understanding
REF: 4.6 Applying the Exponent Laws
KEY: Conceptual Understanding
REF: 4.6 Applying the Exponent Laws
KEY: Conceptual Understanding
REF: 4.6 Applying the Exponent Laws
KEY: Conceptual Understanding

SHORT ANSWER

99. ANS:
$S A=1134 \mathrm{~cm}^{2}$
$V=3591 \mathrm{~cm}^{3}$
PTS: 1 DIF: Moderate REF: 1.6 Surface Area and Volume of a Sphere
LOC: 10.M3 TOP: Measurement KEY: Procedural Knowledge
100. ANS:
$a+6 b$
PTS: 1 DIF: Moderate REF: 3.3 Common Factors of a Polynomial
LOC: 10.AN5 TOP: Algebra and Number KEY: Procedural Knowledge
101. ANS:
$w^{2}-2 w-80=(w+8)(w-10)$
PTS: 1 DIF: Moderate REF: 3.5 Polynomials of the Form $x^{\wedge} 2+b x+c$
LOC: 10.AN5 TOP: Algebra and Number KEY: Procedural Knowledge
102. ANS:
$(11 n-5)(2 n+1)$
PTS: 1 DIF: Easy REF: 3.6 Polynomials of the Form ax^2 ${ }^{\wedge} \mathrm{bx}+\mathrm{c}$
LOC: 10.AN5 TOP: Algebra and Number KEY: Procedural Knowledge
103. ANS:
$7(2 z-5)(z-1)$
PTS: 1 DIF: Moderate REF: 3.6 Polynomials of the Form ax^2 ${ }^{\wedge} \mathrm{bx}+\mathrm{c}$
LOC: 10.AN5
TOP: Algebra and Number
KEY: Procedural Knowledge
104. ANS:
$(11 a+b)(2 a-13 b+4)$
$=22 a^{2}-143 a b+44 a+2 a b-13 b^{2}+4 b$
$=22 a^{2}-141 a b+44 a-13 b^{2}+4 b$
PTS: 1 DIF: Moderate REF: 3.7 Multiplying Polynomials
LOC: 10.AN4 TOP: Algebra and Number KEY: Procedural Knowledge
105. ANS:
$11 \sqrt{ } 14$
PTS: 1 DIF: Easy REF: 4.3 Mixed and Entire Radicals

LOC: 10.AN2
TOP: Algebra and Number
KEY: Conceptual Understanding
106. ANS:
$-\frac{a^{3}}{4 b^{4} c^{3}}$

PTS: 1 DIF: Easy REF: 4.6 Applying the Exponent Laws
LOC: 10.AN3
KEY: Conceptual Understanding

PROBLEM

107. ANS:

Since $5280 \mathrm{ft} .=1 \mathrm{mi}$. , to convert feet to miles, divide by 5280.
$20000 \mathrm{ft} .=\frac{20000}{5280} \mathrm{mi}$.
$20000 \mathrm{ft} .=3 \frac{4160}{5280} \mathrm{mi}$.
$20000 \mathrm{ft} .=3 \mathrm{mi} .4160 \mathrm{ft}$.

Since $3 \mathrm{ft} .=1 \mathrm{yd}$. , to convert feet to yards, divide by 3 .
$4160 \mathrm{ft} .=\frac{4160}{3} \mathrm{yd}$.
$4160 \mathrm{ft} .=1386_{3}^{2} \mathrm{yd}$.
$4160 \mathrm{ft} .=1386 \mathrm{yd} .2 \mathrm{ft}$.

So, $20000 \mathrm{ft} .=3 \mathrm{mi} .1386 \mathrm{yd} .2 \mathrm{ft}$.

PTS: 1 DIF: Moderate REF: 1.1 Imperial Measures of Length
LOC: 10.M2 TOP: Measurement
KEY: Communication | Problem-Solving Skills
108. ANS:

The surface area of the composite object is: area of the 4 rectangular faces of the prism + area of square base of the prism + area of 4 triangular faces of the pyramid

The area of the 4 rectangular faces of the prism, in square feet, is:
$A=4(6)(9)$
$A=216$

The area of the square base of the prism, in square feet, is:
$A=(6)(6)$
$A=36$

To determine the surface area of the triangular faces, calculate the slant height, s. Sketch a triangle to represent a triangular face.

Use the Pythagorean Theorem in right $\triangle \mathrm{ADB}$.
$s^{2}=A D^{2}+B D^{2}$
$s^{2}=3^{2}+3^{2}$
$s^{2}=9+9$
$s^{2}=18$
$s=\sqrt{18}$
The area of the 4 triangular faces of the pyramid, in square feet, is:
$A=4\left(\frac{1}{2}\right)(6)(\sqrt{18})$
$A=50.9116 \ldots$
The surface area of the composite object, in square feet, is:
$216+36+50.9116 \ldots=302.9116 \ldots$
The surface area of the composite object is approximately 303 square feet.
PTS: 1 DIF: Difficult REF: 1.7 Solving Problems Involving Objects
LOC: 10.M3 TOP: Measurement
KEY: Communication | Problem-Solving Skills
109. ANS:

Surface area of the composite object $=$ lateral area of cone + surface area of hemisphere - area of base of cone
Use the formula to determine the lateral area of the cone.
Let s represent the slant height.
Use the Pythagorean Theorem in right $\triangle \mathrm{ADB}$.
$s^{2}=A D^{2}+B D^{2}$
$s^{2}=9^{2}+2^{2}$
$s^{2}=81+4$
$s^{2}=85$

$s=\sqrt{85}$
The lateral area of the cone, in square inches, is:

$$
\begin{aligned}
& S A=\pi r s \\
& S A=\pi(2)(\sqrt{85}) \\
& S A=57.9281 \ldots
\end{aligned}
$$

Use the formula to find the surface area of the hemisphere.
The radius, r, is:
$r=\frac{1}{2}(8 \mathrm{in}$.
$r=4 \mathrm{in}$.
$S A=\frac{1}{2}\left(4 \pi r^{2}\right)+\pi r^{2}$
$S A=3 \pi r^{2}$
$S A=3 \pi(4)^{2}$
$S A=150.7964 \ldots$
The area of the base of the cone, in square inches, is:
$S A=\pi r^{2}$
$S A=\pi(2)^{2}$
$S A=12.5663 \ldots$
The surface area of the composite object is:
$57.9281 \ldots+150.7964 \ldots-12.5663 \ldots=196.1581 \ldots$
The surface area of the composite object is approximately 196 square inches.
PTS: 1 DIF: Difficult REF: 1.7 Solving Problems Involving Objects
LOC: 10.M3 TOP: Measurement KEY: Problem-Solving Skills
110. ANS:

Use the formula for the area, A, of a rectangle.
$A=l \times w$
$A=(5 b-6)(3 b-2)$
Use the distributive property.
$A=5 b(3 b-2)+(-6)(3 b-2)$
$A=15 b^{2}-10 b-18 b+12$
$A=15 b^{2}-28 b+12$
The area of the rectangle is $15 b^{2}-28 b+12$ square units.
PTS: 1 DIF: Moderate REF: 3.6 Polynomials of the Form ax^2 $+b x+c$
LOC: 10.AN5
TOP: Algebra and Number
KEY: Problem-Solving Skills
111. ANS:

Sample answer:
$5 x^{2}+17 x+6$
To factor this trinomial, find factors of the form $(a x+b)(c x+d)$.

The coefficient of x^{2} is 5 , so the coefficients of the 1 st terms in the binomial are factors of 5 , which are 1 and 5.

So, the binomial has the form $(x+b)(5 x+d)$.
The constant term in the trinomial is 6 , so the 2 nd terms in the binomial are factors of 6 , which are 6 and 1 , or 2 and 3.

So, the binomials could be:
$\begin{array}{lll}(x+6)(5 x+1) & \text { or } & (x+2)(5 x+3)\end{array}$ or
Check which of the 4 binomial products above has its x-term equal to $17 x$.
$(x+6)(5 x+1)=5 x^{2}+31 x+6$
$(x+2)(5 x+3)=5 x^{2}+13 x+6$
$(x+1)(5 x+6)=5 x^{2}+11 x+6$
$(x+3)(5 x+2)=5 x^{2}+17 x+6$
This is the correct trinomial.
So, $5 x^{2}+17 x+6=(x+3)(5 x+2)$
PTS: 1
DIF: Moderate REF: 3.6 Polynomials of the Form $a x^{\wedge} 2+b x+c$
LOC: 10.AN5 TOP: Algebra and Number
KEY: Communication | Problem-Solving Skills
112. ANS:
$196 x^{2}-16 y^{2}$
As written, each term of the binomial is not a perfect square. But the terms have a common factor 4. Remove this common factor.
$196 x^{2}-16 y^{2}$
$=4\left(49 x^{2}-4 y^{2}\right)$
Write each term in the binomial as a perfect square.

$$
\begin{aligned}
4\left(49 x^{2}-4 y^{2}\right) & =4\left[(7 x)^{2}-(2 y)^{2}\right] \quad \text { Write these terms in binomial factors. } \\
& =4(7 x-2 y)(7 x+2 y)
\end{aligned}
$$

PTS: 1
DIF: Moderate REF: 3.8 Factoring Special Polynomials
LOC: 10.AN5 TOP: Algebra and Number
KEY: Communication | Problem-Solving Skills
113. ANS:

The formula for the area, A, of a square is $A=s^{2}$, where s is the side length of the square.

$$
1134=s^{2}
$$

$\sqrt{1134}=s$
As a mixed radical in simplest form:
$s=\sqrt{81 \cdot 14}$
$s=9 \sqrt{14}$
The formula for the perimeter, P, of a square is $P=4 s$.
$P=4(9 \sqrt{14})$
$P=36 \sqrt{14}$
The perimeter of the square is $36 \sqrt{14} \mathrm{~m}$.
PTS: 1 DIF: Moderate REF: 4.3 Mixed and Entire Radicals
LOC: 10.AN2 TOP: Algebra and Number KEY: Problem-Solving Skills
114. ANS:
a) There is an error in the second line. When multiplying powers with the same base, the exponents should have been added, not multiplied.
A correct solution:

$$
\begin{aligned}
\left(x^{-6} y^{6}\right)\left(x^{-\frac{1}{6}} y^{5}\right) & =x^{-6} \cdot x^{\frac{1}{6}} \cdot y^{6} \cdot y^{5} \\
& =x^{-\frac{37}{6}} y^{11} \\
& =\frac{y^{11}}{\frac{37}{6}}
\end{aligned}
$$

b) There are two errors in the first line. The coefficient 2 was incorrectly multiplied by the exponent -4 . And, the exponent of the variable n was added to -4 instead of being multiplied by -4 .
A correct solution:

$$
\left(\frac{2 m^{\frac{1}{4}}}{n^{4}}\right)^{-4}=\frac{2^{-4} m^{-1}}{n^{-16}}
$$

$$
\begin{aligned}
& =\frac{n^{16}}{2^{4} m^{1}} \\
& =\frac{n^{16}}{16 m}
\end{aligned}
$$

PTS: 1
DIF: Moderate
REF: 4.6 Applying the Exponent Laws
LOC: 10.AN3
TOP: Algebra and Number
KEY: Problem-Solving Skills | Communication

