\qquad
Midterm Exam Menihek High School 2013
Choose the best answer. 2 marks each
1 Given the graph below, which statement is true of the polynomial function?

	Degree	Value of Leading Coefficient
A)	3	positive
B)	3	negative
C)	4	positive
D)	4	negative

2 Given a polynomial function $\mathrm{P}(\mathrm{x})$ with $\mathrm{P}(-3)=0$, which is a factor of $\mathrm{P}(\mathrm{x})$?
A) -3
B) 3
C) $x-3$
D) $x+3$

3 Which polynomial function best represents the graph shown below?

(A) $\quad f(x)=-(x-2)(x+2)^{2}$
(B) $\quad f(x)=-(x-2)^{2}(x+2)$
(C) $\quad f(x)=(x-2)(x+2)^{2}$
(D) $\quad f(x)=(x-2)^{2}(x+2)$
(A) $x^{3}-4 x^{2}-3 x+18=0$
(B) $x^{3}-x^{2}-8 x+12=0$
(C) $x^{3}+x^{2}-8 x-12=0$
(D) $x^{3}+4 x^{2}-3 x-18=0$

5
What are the x-intercepts of the graph of the function $f(x)=2 x^{3}+3 x^{2}-2 x-3$?
(A) $\left\{-\frac{3}{2},-1,1\right\}$
(B) $\left\{-\frac{3}{2}, 1,1\right\}$
(C) $\quad\left\{-1,-1, \frac{3}{2}\right\}$
(D) $\quad\left\{-1,1, \frac{3}{2}\right\}$

6 What is the remainder when the function $\mathrm{f}(\mathrm{x})=4 x^{7}-6 x^{2}+1$ is divided by $(\mathrm{x}+1)$?
A) -9
B) -1
C) 3
D) 11

7 Which is true of the function $(y-6)=-4 f(5 x+20)$?

	Horizontal Stretch	Vertical Stretch
A)	$\frac{1}{5}$	-4
B)	$\frac{1}{5}$	4
C)	5	-4
D)	5	$\frac{1}{4}$

8 If $y=f(x)$ is transformed to $y=-2 f(4 x-12)+5$ what is the mapping rule used?
A) $\quad(x, y) \rightarrow(4 x+12,-2 y+5)$
B) $\quad(x, y) \rightarrow(4 x-12,-2 y-5)$
C) $\quad(x, y) \rightarrow\left(\frac{1}{4} x-3,-\frac{1}{2} y+5\right)$
D) $\quad(x, y) \rightarrow\left(\frac{1}{4} x+3,-2 y+5\right)$

Which graph has an inverse that is also a function?
(A)

(B)

(C)

(D)

10 The point $(-2,4)$ is on the graph of $y=f(x)$. What are the coordinates of the image point under the transformation $y-2=-3 f(-x+4)$?
A) $(-2,-10)$
B) $(-6,-10)$
C) $(6,-12)$
D) $(6,-14)$

What is the inverse of $y=2 x^{2}-8$?
(A) $x= \pm \sqrt{\frac{y+8}{2}}$
(B) $x= \pm \sqrt{\frac{1}{2} y+8}$
(C) $y= \pm \sqrt{\frac{x+8}{2}}$
(D) $y= \pm \sqrt{\frac{1}{2} x+8}$

What are the zeros of the function $y=f(x)$ after the transformation $f\left(-\frac{1}{2} x\right)$?

(A) $\{-6,2\}$
(B) $\quad\{-2,6\}$
(C) $\left\{-\frac{3}{2}, \frac{1}{2}\right\}$
(D) $\quad\left\{-\frac{1}{2}, \frac{3}{2}\right\}$

What is the horizontal stretch of $y=a f(b x)$ as compared to $y=f(x) ?$

(A) $\frac{1}{3}$
(B) $\frac{1}{2}$
(C) 2
(D) 3

14 The domain of $y=f(x)$ is [-4,12] and range is [0,16]. What is the value of b in the transformation of $y=a f(b x)$ if the new domain is $[-8,24]$ and the range is now $[0,-8]$?
A) -2
B) $\frac{-1}{2}$
C) $\frac{1}{2}$
D) 2

Which function best represents the graph shown below?
(A) $y=\sqrt{-x}-3$

(B) $y=\sqrt{-x}+3$
(C) $y=-\sqrt{x}-3$
(D) $\quad y=-\sqrt{x}+3$

What are all of the invariant points for the graphs of $f(x)=4 x^{2}+3 x$ and $y=\sqrt{f(x)}$?
(A) $(-1,1),\left(-\frac{3}{4}, 0\right),(0,0),\left(\frac{1}{4}, 1\right)$
(B) $(-1,1),\left(\frac{1}{4}, 1\right)$
(C) $\left(-\frac{3}{4}, 0\right),(0,0)$
(D) $\quad(0,0),(1,7)$

The function $y=\sqrt{x}$ is stretched horizontally by a factor of 4 , reflected in the y-axis and translated 8 units left. What is the domain of the transformed function?
A) $(-8,0)$
B) $(-8, \infty)$
C) $[-8, \infty)$
D) $(-\infty,-8]$

Which graph represents an angle measuring $\frac{5 \pi}{3}$?
(A)

(B)

(C)

(D)

19 In what quadrant does θ lie if $\sec \theta>0$ and $\csc \theta<0$?
A) I
B) II
C) III
D) IV

20 A circle has a diameter of 20 units with center at the origin. What is the length of an arc that a 120° angle subtends?
A) $\frac{2 \pi}{3}$
B) $\frac{10 \pi}{3}$
C) $\frac{20 \pi}{3}$
D) $\frac{40 \pi}{3}$

Evaluate: $\quad \cot \pi$
A) -1
B) 0
C) 1
D) undefined

22 What is $\frac{11 \pi}{9}$ in degree measure?
A) 10°
B) 20°
C) 210°
D) 220°

What is the exact value sec -135° ?
A) $-\sqrt{2}$
B) $\sqrt{2}$
C) $\frac{-1}{\sqrt{2}}$
D) $-\frac{2 \sqrt{3}}{3}$

What is period of $y=-2 \cos 3\left(x-30^{\circ}\right)+4$?
A) 60°
B) 120°
C) 180°
D) 540°
$25 \quad$ What is the range of the graph $\mathrm{y}=5 \sin 2\left(\mathrm{x}+45^{\circ}\right)-1$?
A) $[-6,-1]$
B) $[-6,4]$
C) $[-1,4]$
D) $[-5,-4]$

Part II

1 Sketch the graph of $y=x^{3}-3 x-2$ clearly labeling the x and y intercepts. 8 marks

The graph of $y=f(x)$ with points $A(5,3), B(3,6), C(-1,-3)$ is transformed so that $A^{\prime}(-9,-1), B^{\prime}(-5,0), C^{\prime}(3,-3)$. Plot the points and determine the equation of the image function in the form $y=a f(b(x-h))+k$.

Given the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ below, sketch the graph of the transformation $y=-2 f(-2(x-4))+1$ by using a table of values for the key points of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and a mapping rule.

6 marks

4 Given the function $f(x)=x^{2}-9$,
A) Restrict the domain on $\mathrm{f}(\mathrm{x})$ so that $f^{-1}(x)$ is a function. 1 mark
B) Sketch $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and $y=\sqrt{x}$ on the same coordinate axis. 4 marks

5 Algebraically determine the exact value of the expression below. Completely simplify the expression.

$$
\cot \frac{\pi}{3}+\cos ^{2} \frac{9 \pi}{4}
$$

$$
\csc \left(-30^{\circ}\right)
$$

Solve for all θ in radian measure

$$
2 \cos ^{2} x+5 \cos x-3=0
$$

Or
The point $\left(-\frac{\sqrt{3}}{2}, y\right)$ lies on the terminal arm of θ on the unit circle. If $0^{\circ}<x<360^{\circ}$ and θ is a third quadrant angle, determine exact values for all trigonometric ratios and the measure of θ.

7
Sketch the graph of $y=4 \cos 2\left(x-60^{\circ}\right)+1$. State the requested information below.

8 marks

A) Period=
B) Amplitude =
C) Mapping Rule:
D) Phase shift:
E) Domain and Range:
F) Equation of the Sinusoidal Axis:

