Circle the correct response. 2 marks each

1. The graph $y=f(x)$ contains the point $(3,4)$.

After a transformation, the point $(3,4)$ is transformed to $(5,5)$. Which of the following is a possible equation of the transformed function?

A $y+1=f(x+2)$
B $y+1=f(x-2)$
C $y-1=f(x+2)$
D $y-1=f(x-2)$
2. The graph of $y=|x|$ is transformed by a vertical stretch by a factor of 3 about the x-axis, and then a horizontal translation of 3 units left and a vertical translation up 1 unit. Which of the following points is on the transformed function?

A (0,0)
B $(1,3)$
C $(-3,1)$
D $(3,1)$
3. The graph of $y=\sqrt{x}$ is vertically stretched by a factor of 2 about the x-axis, then reflected about the y-axis, and then horizontally translated left 3 . What is the equation of the transformed function?
A $y=2 \sqrt{-x-3}$
B $y=2 \sqrt{-x+3}$
C $y=-2 \sqrt{x+3}$
D $y=-2 \sqrt{x-3}$
4. Which of the following transformations would produce a graph with the same x-intercepts as $y=f(x)$?

A $y=-f(x)$
B $y=f(-x)$
C $y=f(x+1)$
D $y=f(x)+1$
5. Given the graph of $y=f(x)$, what is the invariant point under the transformation $y=f(-2 x)$?

A ($-1,0$)
B $\left(0, \frac{1}{2}\right)$
C $(1,1)$
D $(3,1)$
6. What will the transformation of the graph of $y=f(x)$ be if y is replaced with $-y$ in the equation $y=f(x)$?
A It will be reflected in the x-axis.
B It will be reflected in the y-axis.
C It will be reflected in the line $y=x$.
D It will be reflected in the line $y=-1$.

7 When the value of a is less than -1 , the function $g(x)=a x^{2}$ has what relationship to the base function $f(x)=x^{2}$?
A $f(x)$ is compressed vertically
B $f(x)$ is reflected and compressed vertically
C $f(x)$ is stretched vertically
D $f(x)$ is reflected and stretched vertically

8 Which choice best describes the combination of transformations that must be applied to the graph of $f(x)=|x|$ to obtain the graph of $g(x)=f(2 x-4)$?
A a horizontal stretch by a factor of 2 and a horizontal translation of 2 units to the left
B a horizontal stretch by a factor of $\frac{1}{2}$ and a horizontal translation of 4 units to the right
C a horizontal stretch by a factor of $\frac{1}{2}$ and a horizontal translation of 2 units to the right
D a horizontal stretch by a factor of -2 and a horizontal translation of 2 units to the right

Which of the following functions is the correct inverse for the function $f(x)=-\frac{9}{2} x+6$?
A $f^{-1}(x)=-\frac{2}{9} x+\frac{4}{3}$
C $f^{-1}(x)=-\frac{2}{9} x-\frac{4}{3}$
B $f^{-1}(x)=\frac{9}{2} x+\frac{4}{3}$
D $f^{-1}(x)=\frac{9}{2} x-\frac{4}{3}$

A

C

B

D

11 If $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is transformed by the transformation, $y-6=-4 f(-2 x+8)$, which statement below is true?
A) $\mathrm{f}(\mathrm{x})$ is transformed 8 units left, 6 units down with a horizontal stretch of -2 and a vertical stretch of -4
B) $f(x)$ is transformed 8 units left, 6 units up with a horizontal stretch of $\frac{1}{2}$ and a vertical stretch of $\frac{1}{4}$
C) $f(x)$ is transformed 4 units left, 6 units up with a horizontal stretch of $\frac{1}{2}$ and a vertical stretch of 4
D) $\mathrm{f}(\mathrm{x})$ is transformed 4 units right, 6 units up with a horizontal stretch of .5 and a vertical stretch of 4 , reflected in the x axis.

What would be the mapping rule for the transformation performed in question 11 ?
A) $(x, y) \rightarrow(-.5 x-8,6 y-4)$
B) $(x, y) \rightarrow(-.5 x-8,-4 y+6)$
C) $(x, y) \rightarrow(-.5 x+4,-4 y-6)$
D) $(x, y) \rightarrow(-.5 x+4,-4 y+6)$

Part II

1) Given the graph of $y=f(x)$ below, sketch the graph of the transformation $y=-2 f(-2(x-4))+1$ by using a table of values for the key points of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and a mapping rule.

10 marks

2) Given the sketch of $y=f(x)$ below, $y=g(x)$ is a transformation of $y=f(x)$. Determine the equation of the transformation in the form $y=a f(b(x-h))+k$ algebraically. Be sure to show all workings.

10 marks

3 Given $y=x^{2}-4 x+1$,
A) determine the equation of the inverse. 6 marks
B) Restrict the domain of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ above and write the equation of the inverse now.
C) Use a table of values along with your restricted domain in B to sketch the graphs of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and $y=f^{-1}(x)$ on the same $\mathrm{x}-\mathrm{y}$ plane with the mirror $\mathrm{y}=\mathrm{x}$.

8 marks

