Eastern
 School District

 Mathematics 2201

 Mathematics 2201 Common Mathematics Assessment

June 12, 2013

Name:

Mathematics
Teacher:

28 Selected Response
28 marks
13 Constructed Response
42 marks

FINAL
70 Marks
TIME: 2 HOURS

NOTE

Diagrams are not necessarily drawn to scale.

FORMULAE

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \quad a^{2}=b^{2}+c^{2}-2 b c \cos A \quad \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

$$
\sigma=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}} \quad z=\frac{x-\mu}{\sigma} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Selected Response: Choose the appropriate response on the answer sheet or SCANTRON.

1. What is a statement that is believed to be true but not yet proven?
(A) Conjecture
(B) Counterexample
(C) Deductive Reasoning
(D) Inductive Reasoning
2. Which is a counterexample to the statement "The sum of two consecutive integers is always greater than each of the two integers"?
(A) $\quad-4+(-5)=-9$
(B) $4+(-5)=-1$
(C) $\quad-4+5=1$
(D) $4+5=9$
3. How many circles are in the $5^{\text {th }}$ diagram in the sequence below:

(A) 9
(B) 10
(C) 14
(D) 15
4. If two non-parallel lines are cut by a transversal, which pair of angles is always equal?
(A) Alternate Interior
(B) Corresponding
(C) Supplementary
(D) Vertically Opposite
5. A student was asked to find the measure of $\angle 1$. In which step did he make the first error?

Solution Step 1: $\angle 3=180^{\circ}-115^{\circ}$
Step 2: $\angle 3=65^{\circ}$
Step 3: $\angle 1=\angle 3$
Step 4: $\angle 1=65^{\circ}$
(A) 1
(B) 2
(C) 3
(D) 4
6. How many sides does a convex polygon have if the sum of its interior angles is 1440° ?
(A) 4
(B) 6
(C) 8
(D) 10
7. What is the measure of $\angle C$?

(A) $\quad 20^{\circ}$
(B) 26°
(C) 69°
(D) $\quad 71^{\circ}$
8. Which equals the measure of $\angle A$?

(A) $\cos ^{-1}\left(\frac{5^{2}+9^{2}-7^{2}}{2(5)(9)}\right)$
(B) $\cos ^{-1}\left(\frac{7^{2}+5^{2}-9^{2}}{2(7)(5)}\right)$
(C) $\cos ^{-1}\left(\frac{9^{2}+5^{2}-7^{2}}{2(9)(5)}\right)$
(D) $\cos ^{-1}\left(\frac{9^{2}+7^{2}-5^{2}}{2(9)(7)}\right)$
9. Simplify completely: $\quad 5 \sqrt{7}+3 \sqrt{28}$
(A) $11 \sqrt{7}$
(B) $\quad 17 \sqrt{7}$
(C) $11 \sqrt{14}$
(D) $8 \sqrt{35}$
10. Simplify completely: $\quad \sqrt[3]{-8 x^{17}}$
(A) $\quad-2 x^{2} \sqrt[3]{x^{5}}$
(B) $\quad-2 x^{5} \sqrt[3]{x^{2}}$
(C) $\quad 2 x \sqrt[3]{-2 x^{8}}$
(D) $\quad 2 x^{8} \sqrt[3]{-2 x}$
11. Write $3 x^{3} \sqrt{5 x}$ as an entire radical.
(A) $\sqrt{15 x^{4}}$
(B) $\sqrt{15 x^{7}}$
(C) $\sqrt{45 x^{4}}$
(D) $\sqrt{45 x^{7}}$
12. A student was asked to simplify $\frac{x \sqrt{18 x^{3}}}{3}$ but did not complete a correct solution. Which step contains her first error?

Solution: \quad Step 1: $\quad \frac{x \sqrt{9 \cdot 2 \cdot x^{2} \cdot x}}{3}$
Step 2: $\quad \frac{x \cdot 9 x^{2} \sqrt{2 x}}{3}$
Step 3: $\quad \frac{9 x^{3} \sqrt{2 x}}{3}$
Step 4: $\quad 3 x^{3} \sqrt{2 x}$
(A) 1
(B) 2
(C) 3
(D) 4
13. Simplify completely: $\frac{5 \sqrt{32}}{2 \sqrt{3}}$
(A) $\frac{10 \sqrt{6}}{3}$
(B) $\frac{40 \sqrt{6}}{3}$
(C) $\frac{5 \sqrt{96}}{6}$
(D) $\frac{10 \sqrt{96}}{12}$
14. What are the restrictions on the variable for $\sqrt{x+2}$?
(A) $\quad x \geq-2$
(B) $\quad x>-2$
(C) $\quad x \geq 2$
(D) $\quad x>2$
15. Which represents data with the largest standard deviation?
(A)

(B)

(C)

(D)

16. The histogram shown represents the heights of hockey players on a professional hockey team. How many players have a height between 1.8 m and 2.0 m ?

Heights of Hockey Players

(A) 10
(B) 18
(C) 24
(D) 28
17. A set of data is normally distributed. What percent of the data is within two standard deviations of the mean?
(A) 47.5
(B) 68
(C) 95
(D) 99.7
18. The function $y=-3 x^{2}-12 x-13$ has axis of symmetry $x=-2$. Which represents the function?
(A)

(B)

(C)

(D)

19. What is the domain and range for $f(x)=-2(x+1)^{2}-3$?
(A) $\quad x \in \mathbb{R}$ and $f(x) \leq-3$
(B) $\quad x \in \mathbb{R}$ and $f(x) \geq-3$
(C) $\quad x \leq-1$ and $f(x) \in \mathbb{R}$
(D) $\quad x \geq-1$ and $f(x) \in \mathbb{R}$
20. A parabola has x-intercepts of $(-2,0)$ and $(-8,0)$. What is the axis of symmetry?
(A) $\quad x=-5$
(B) $\quad x=-3$
(C) $y=-5$
(D) $\quad y=-3$
21. What is the vertex of $y=2 x^{2}+8 x-5$?
(A) $\quad(-2,-29)$
(B) $\quad(-2,-13)$
(C) $\quad(2,15)$
(D) $\quad(2,19)$
22. The graph of a quadratic function has vertex $(1,-4)$ and opens upward. How many x-intercepts does it have?
(A) 0
(B) 1
(C) 2
(D) 3
23. What is the equation of the function graphed below?

(A) $y=(x-1)(x-3)$
(B) $y=(x-1)(x+3)$
(C) $y=(x+1)(x-3)$
(D) $\quad y=(x+1)(x+3)$
24. Which is a root of $2 x^{2}-5 x-3=0$
(A) $\quad-3$
(B) $\quad-1$
(C) 1
(D) 3
25. Which represents a quadratic function with zeros of -2 and 4 and a maximum value?
(A)

(B)

(C)

(D)

26. What is the scale factor in the figure below?

(A) $\frac{1}{3}$
(B) $\frac{1}{2}$
(C) 2
(D) 3
27. During which time period was the growth rate of CD sales the greatest in the graph shown?

CD Sales

(A) 2000-2001
(B) 2001-2002
(C) 2002-2003
(D) 2003-2004
28. The surface area of a cone is $34 f t^{2}$. If the cone is enlarged by a scale factor of 3 , what is the surface area, in $f t^{2}$, of the image?
(A) 37
(B) 102
(C) 306
(D) 918

Constructed Response:

Answers to be written on this paper in the space provided. Show all workings.
29. Use both inductive and deductive reasoning to show that the result for the given [4 marks] number trick will always be the original number.

NUMBER TRICK	Inductive Reasoning	Deductive Reasoning
Choose a number.	-	
Double it.	-	
Add 6.	-	
Double it	-	
Subtract 4.	-	
Divide by 4.		-
Subtract 2.		-

30. Find the measure of each indicated angle. Justify your answer.

Angle Measure	Justification
$x=$	
$y=-\quad$	
$z=$	

31. Use either a paragraph or two-column format to complete the given proof:

32. A boat travels from Bell Island to Kelly's Island to Little Bell Island, and returns directly back to Bell Island. What is the total distance travelled?

33. Simplify completely: $\quad 5 \sqrt{6}(\sqrt{3}+3 \sqrt{12}-\sqrt{2})$
[3 marks]
34. State the restrictions on x, solve the equation, and then check for extraneous roots.
$\sqrt{3 x+1}-3=-4$
35. A factory produces automotive brake pads with a mean mass of 174 g and a standard deviation of 0.7 g . Quality control expects that the mass of the pads will lie within the acceptable range of 173.9 g and 174.1 g . What is the confidence interval and margin of error this factory uses for its quality control tests?
36. Jason scored 82% on a test where the class average was 74% and the standard deviation was 10.6%. If the class was normally distributed, what percentage of the class scored better than Jason?
37. A farmer has 300 m of chain link fencing to create a rectangular pen, using the side of a barn as one side of the pen. Algebraically determine the maximum area that can be enclosed by the pen.

38. Algebraically determine the vertex and \mathbf{x}-intercepts for the function $y=x^{2}-2 x-8$. Sketch the graph, labelling all key points.

39. Solve the given equation. State the solution(s) in exact form.
$6 x^{2}=-4 x+3$
40. On another planet, the path of a rock that is thrown is given by
$h=-t^{2}+4 t+6$, where h is height in metres and t is time in seconds. At what time(s) would the height of the ball be 9 m ?
41. Avalon Supermarket sells a box of 48 granola bars for $\$ 7.99$ and a box of 8 bars for $\$ 1.99$. What is the least expensive way to buy 70 granola bars? Justify your reasoning.

Name:
Mathematics Teacher: \qquad

1.	A	B	C	D	15.	A	B	C	D
2.	A	B	C	D	16.	A	B	C	D
3.	A	B	C	D	17.	A	B	C	D
4.	A	B	C	D	18.	A	B	C	D
5.	A	B	C	D	19.	A	B	C	D
6.	A	B	C	D	20.	A	B	C	D
7.	A	B	C	D	21.	A	B	C	D
8.	A	B	C	D	22.	A	B	C	D
9.	A	B	C	D	23.	A	B	C	D
10.	A	B	C	D	24.	A	B	C	D
11.	A	B	C	D	25.	A	B	C	D
12.	A	B	C	D	26.	A	B	C	D
13.	A	B	C	D	27.	A	B	C	D
14.	A	B	C	D	28.	A	B	C	D

