\qquad

Part I: Shade the letter of the correct answer on the scantron form provided. (11 Marks)

1. What is $4^{x-1}=y+2$ written in logarithmic form?
A) $\log _{4}(x-1)=y+2$
B) $\log _{x-1}(y+2)=4$
C) $\log _{4}(y+2)=x-1$
D) $\log _{y+2}(x-1)=4$
2. Solve for : $\log _{x} 16=\frac{2}{3}$
A) $\frac{1}{8}$
B) 4
C) 8
D) 64
3. What is the domain of $y=\log _{5}(x+2)-3$?
A) $\{x \mid x \in R\}$
B) $\{x \mid x>-2, x \in R\}$
C) $\{x \mid x \geq-2, x \in R\}$
D) $\{x \mid x>0, x \in R\}$
4. What is the mapping rule for $y=-2 \log _{2}(3 x-6)+4$?
A) $(x, y) \rightarrow\left(\frac{1}{3} x+6,-2 y+4\right)$
B) $(x, y) \rightarrow\left(\frac{1}{3} x+2,-2 y+4\right)$
C) $(x, y) \rightarrow\left(3 x+6,-\frac{1}{2} y+4\right)$
D) $(x, y) \rightarrow(3 x+2,-2 y+4)$
5. What is $\frac{1}{2} \log a-\frac{3}{2} \log b$ written as a single logarithm?
A) $\frac{1}{2}\left(\frac{\log a}{3 \log b}\right)$
B) $\frac{1}{2}\left(\frac{\log a}{\log b^{3}}\right)$
C) $\sqrt{\log \frac{a}{b^{3}}}$
D) $\log \sqrt{\frac{a}{b^{3}}}$
6. What is the x-intercept of $=\log _{2}(x+4)$?
A) -4
B) -3
C) 2
D) 16
7. Solve for $x: 7^{x+2}=40$
A) $x=\frac{\log 40}{\log 7}-2$
B) $x=\frac{\log 7}{\log 40}-2$
C) $x=\log \frac{40}{7}-2$
D) $x=\frac{\log (40)-2}{\log 7}$
8. Solve for $x: \log _{2} x^{2}-\log _{2} 5=\log _{2} 20$
A) 2
B) ± 2
C) 10
D) ± 10
9. Which function best represents the graph shown below?

A) $y=-\log _{5}(x-3)$
B) $y=-\log _{5}(x+3)$
C) $y=\log _{5}(x-3)$
D) $y=\log _{5}(x+3)$
10. What is the inverse of $y=8^{x}$?
A) $x=\log _{y} 8$
B) $x=\log _{8} y$
C) $\mathrm{y}=\log _{x} 8$
D) $y=\log _{8} x$
11. The equation $A(t)=A_{0}\left(\frac{1}{2}\right)^{t / 3}$ represents the amount of a radioactive sample remaining after t years. How much time will it take for 15% of the sample to remain?
A) 0.7 years
B) 0.9 years
C) 8.2 years
D) 10.0 years

Part II: Show all workings in the space provided. (20 Marks)

1. Solve for x : (4 mks each)
a) $\log _{3}(x-4)+\log _{3}(x+2)=\log _{3} 16$
b) $\log (2 x+6)=1+\log (x-1)$
2. Solve for $\mathrm{x}: \quad 2(6)^{x+2}=3^{2 x-3}$
3. Graph the function $y=-\log _{2}\left(\frac{1}{2} x+2\right)+3$ using a mapping rule and appropriate tables of values. Label any asymptotes.

4. Sound level is measured in decibels using the formula $\beta=10(\log I+12)$, where β is measured in dB and I is the sound intensity measured in watts per metre squared $\left(\mathrm{w} / \mathrm{m}^{2}\right)$. Algebraically determine the sound intensity of a lawn mower which has a sound level of 95 dB .
