Math 3200	Test	Name:
Chapter 8	/31	

Part I: Shade the letter of the correct answer on the scantron form provided. (11 Marks)

- 1. What is $4^{x-1} = y + 2$ written in logarithmic form?
- A) $log_4(x-1) = y+2$ B) $log_{x-1}(y+2) = 4$ C) $log_4(y+2) = x-1$ D) $log_{y+2}(x-1) = 4$
- 2. Solve for : $log_x 16 = \frac{2}{3}$ A) $\frac{1}{8}$ B) 4 C) 8 D) 64
- 3. What is the domain of $y = log_5(x + 2) 3$? A) $\{x | x \in R\}$ B) $\{x | x > -2, x \in R\}$ C) $\{x | x \ge -2, x \in R\}$ D) $\{x | x > 0, x \in R\}$
- 4. What is the mapping rule for $y = -2log_2(3x 6) + 4$? A) $(x, y) \rightarrow (\frac{1}{3}x + 6, -2y + 4)$ B) $(x, y) \rightarrow (\frac{1}{3}x + 2, -2y + 4)$ C) $(x, y) \rightarrow (3x + 6, -\frac{1}{2}y + 4)$ D) $(x, y) \rightarrow (3x + 2, -2y + 4)$
- 5. What is $\frac{1}{2}loga \frac{3}{2}logb$ written as a single logarithm? A) $\frac{1}{2} \left(\frac{loga}{3logb} \right)$ B) $\frac{1}{2} \left(\frac{loga}{logb^3} \right)$ C) $\sqrt{log \frac{a}{b^3}}$ D) $log \sqrt{\frac{a}{b^3}}$
- 6. What is the x-intercept of $= log_2(x + 4)$? A) -4 B) -3 C) 2 D) 16
- 7. Solve for x: $7^{x+2} = 40$ A) $x = \frac{\log 40}{\log 7} - 2$ B) $x = \frac{\log 7}{\log 40} - 2$ C) $x = \log \frac{40}{7} - 2$ D) $x = \frac{\log(40) - 2}{\log 7}$

8. Solve for x:
$$log_2 x^2 - log_2 5 = log_2 20$$

A) 2 B) ± 2 C) 10 D) ± 10

9. Which function best represents the graph shown below?

A)
$$y = -log_5(x - 3)$$

B) $y = -log_5(x + 3)$
C) $y = log_5(x - 3)$
D) $y = log_5(x + 3)$

- 10. What is the inverse of $y = 8^x$?
- A) $x = log_y 8$ B) $x = log_8 y$ C) $y = log_x 8$ D) $y = log_8 x$

11. The equation $A(t) = A_0 \left(\frac{1}{2}\right)^{t/3}$ represents the amount of a radioactive sample remaining after t years. How much time will it take for 15% of the sample to remain? A) 0.7 years B) 0.9 years C) 8.2 years D) 10.0 years

Part II: Show all workings in the space provided. (20 Marks)

1. Solve for x: (4 mks each)

a)
$$log_3(x-4) + log_3(x+2) = log_316$$
 b) $log(2x+6) = 1 + log(x-1)$

3. Graph the function $y = -log_2(\frac{1}{2}x + 2) + 3$ using a mapping rule and appropriate tables of values. Label any asymptotes. (5 mks)

4. Sound level is measured in decibels using the formula $\beta = 10(\log I + 12)$, where β is measured in dB and *I* is the sound intensity measured in watts per metre squared (w/m²). Algebraically determine the sound intensity of a lawn mower which has a sound level of 95dB. (3 mks)