Assignment Unit 7 Winter 2020 Name:

Multiple Choice

Identify the choice that best completes the statement or answers the question. 1 mark each some are 2.

1. Which choice best describes the function $y=20\left(\frac{1}{4}\right)^{-x}$?
A both increasing and decreasing
C
D
increasing
neither increasing nor decreasing
2. Which exponential equation matches the graph shown?

A $y=\left(\frac{1}{8}\right)^{x}$
C $y=-\left(\frac{1}{8}\right)^{x}$
B $y=8^{x}$
D $y=-8^{x}$
$2^{-x}=\left(\frac{1}{2}\right)^{x}$
3. A radioactive sample with an initial mass of 1 mg has a half-life of a $1 / 9$ day. What is the equation that models the exponential decay, A, for time, t, ?
A $A=\left(\frac{1}{2}\right)^{t}$
C $A=2^{9 t}$
B
$A=\left(\frac{1}{2}\right)^{\frac{9}{t}}$
D $A=2^{\frac{9}{t}}$
4. A colony of ants has an initial population of 750 and triples every day. Which function can be used to model the ant population, p, after t days?
A $p(t)=3(750)^{t}$
C $p(t)=750\left(\frac{1}{3}\right)^{t}$
B $p(t)=\frac{1}{3}(750)^{t}$
D $p(t)=750(3)^{t}$
5. A bacteria colony initially has 1500 cells and doubles every week. Which function can be used to model the population, p, of the colony after t days?
A $p(t)=1500(3)^{t}$
B $p(t)=1500(2)^{t}$
C $p(t)=1500(2)^{\frac{t}{7}}$
D $p(t)=1500(3)^{\frac{t}{7}}$
6. To the nearest year, how long would an investment need to be left in the bank at 5%, compounded annually, for the investment to triple?
A 15 years
C 28 years
B 26 years
D 23 years
7. Jennifer deposited some money into an account that pays 7% per year, compounded annually. Today her balance is $\$ 300$. How much was in the account 10 years ago, to the nearest cent?
[Hint: Use $P=A(1+i)^{-n}$.]
A $\$ 163.18$
C $\$ 42.86$
B $\$ 30.00$
D $\$ 152.50$
8. For the exponential function, $y=200(4)^{-x}$ which of the following statements is not true?

A The graph of the function is increasing.
B The graph of the function is decreasing.
C The domain is the set of real numbers.
D The range is the set of real numbers greater than zero.
9. Which of the following transformations maps the function $y=8^{x}$ onto the function $y=8^{x+5}+7$?

A a horizontal shift of 5 units to the left and a vertical shift of 7 units up
B a horizontal shift of 5 units to the right and a vertical shift of 7 units down
C a horizontal shift of 5 units to the right and a vertical shift of 7 units up
D a horizontal shift of 5 units to the left and a vertical shift of 7 units down
10. Which function results when the graph of $y=6^{x}$ is translated 2 units down?
A $y=6^{x-2}$
C $y=6^{x}-2$
B $y=6^{x+2}$
D $y=6^{x}+2$
11. Which function is represented by the following graph?

A $y=-9(9)^{(x+4)}+5$
C $y=-9(9)^{(x-4)}-5$
B $y=9(9)^{-(x+4)}+5$
D $y=9(9)^{-(x-4)}-5$
12. Which function results when the graph of the function $y=4^{x}$ is reflected in the y-axis, compressed vertically by a factor of $\frac{1}{5}$, and shifted 2 units down?
A $y=\frac{1}{5}(4)^{-x}-2$
C $y=\frac{1}{5}(4)^{x}+2$
B $y=\frac{1}{5}(4)^{x}-2$
D $y=\frac{1}{5}(4)^{-x}+2$
13. What is the exponential equation for the function that results from the transformations listed being applied to the base function $y=9^{x}$?

- a reflection in the y-axis
- a vertical stretch by a factor of 6
- a horizontal stretch by a factor of 7
A $y=-7(9)^{\frac{x}{6}}$
C $y=7(9)^{\frac{x}{6}}$
B $y=6(9)^{\frac{-x}{7}}$
D $y=-6(9)^{\frac{x}{7}}$

14. Which equation can be used to model the given information, where the population has been rounded to the nearest whole number?

Year (\boldsymbol{x})	Population (\boldsymbol{y})
0	100
1	104
2	108
3	112
4	117
5	122

A $y=100(1.04)^{x}$
C $y=100(1.04)^{x-1}$
B $y=100(1.4)^{x}$
D $y=100(1.4)^{x-1}$
15. Solve for x. (Show workings!)
$1562500=4(5)^{x}$
A 9
C 8
B 7
D 11
16. Solve for x, to one decimal place. Calculator Logarithms required.
$7333=5^{x}$
A 1466.6
C 36667.0
B 11.1
D 5.5
17. Solve for x. Show workings!
$(36)^{3 x}=216^{(x+7)}$
A 0.3
C 6
B 7
D 3.0
18. The half-life of a radioactive element can be modelled by $M=M_{0}\left(\frac{1}{32}\right)^{\frac{t}{45}}$, where M_{0} is the initial mass of the element; t is the elapsed time, in hours; and M is the mass that remaps after time t. The half-life of the element is
A 32 h
C 45 h
B 10 h
D 90 h
$m=m_{[}\left[\left(\frac{1}{2}\right)^{5}\right]^{\frac{t}{45}}$
20. Solve for \mathbf{x} to the nearest one hundredth? $\quad e^{x+1}=3056.421$
20. \qquad
21. Compute $6 \mathbf{e}-7 \mathbf{e}+\mathbf{e}$.
21. \qquad

Short Answer

1. a) Determine the type of function shown in each graph.

3 marks i)

ii)

iii)

2. Match each graph with the correct corresponding equation. 4 marks
a)

b)

c)

d)

i) $y=\frac{1}{3}(3)^{x}$
ii) $y=3(3)^{x}$
iii) $y=-3^{x}$
iv) $y=3\left(\frac{1}{3}\right)^{x}$
3. For the function, $y=2(6)^{-3 x-9}+13$
a) describe the transformations of the function when compared to the function $y=6^{x}$

VS
HS
VT
HT
Reflection(s):
Mapping Rule:
b) sketch the graph of the function $y=2^{x}$ and $y=-2^{2 x+4}+5$ on the same set of axes using the mapping rule and a table of values for both functions. 6 marks

c) state the domain, the range in interval notation and the equation of the asymptote for each in 3 b : 3 marks Domain: Range: Asymptote:
4. Write the equation for the function that results from each transformation or set of transformations applied to the base function $y=(1.5)^{x}$. 6 marks
a) reflect in the x-axis
b) shift 12 units to the left
c) shift 10 unit down and 14 units to the left
d) reflect in the x-axis and shift 12 units down
5. Solve for n : $9^{n-1}=\left(\frac{1}{3}\right)^{4 n-1}$

3 marks

6. Solve for x :A) $3^{x}=9^{x^{2}-\frac{1}{2}} \quad$ B) $\sqrt[6]{2}=\left(\frac{1}{64}\right)^{-x-3} \quad$ C) $\quad(3 \sqrt{3})^{x}=27^{2 x+1} \quad 16$ marks
7. Graphically solve the system $y=3^{x}, 3 x-y=0$.

6 marks

Applications: For each application, a MODEL must be set up and then used to solve an exponential equation or expression that follows.

1. A colony of ants starts with an initial population of 100 and doubles every fourth week for 16 weeks. a) Create a table of values for weeks 0 to 16 for the population of the colony.

2 marks
b) Is the relationship between the ant population and the number of weeks exponential? Explain. 1 mark
C) Model the information using an equation.

2 marks
D) Using C, algebraically determine how long it will take the colony to reach a population of 6400. 4 marks
2. Jeff buys a new vehicle for $\$ 65000$. It is known that the vehicle will depreciate by 24% of its current value every year. 8 marks
a) Write an equation to relate the depreciated value, V, of the vehicle to the age, t, in years, of the vehicle.
b) Use the equation to determine the value of the vehicle 3 years after Jeff buys it.
c) Approximately how long will it take the vehicle to depreciate to $\$ 15,000$? (Use TI-83)
3. Cobalt-60, which has a half-life of 5.25 years, is used in medical radiology. A sample of 200 mg of the material is present today. 20 marks
a) Write an equation to relate the amount of cobalt-60 remaining and the number of half-life periods.
b) What amount will be present in 12.6 years to one decimal place?
c) Algebraically, how many years will it take for the amount of cobalt-60 to decay to one quarter of its initial amount?
d) Algebraically, how long will it take to decay to 12.5% of its original amount?
e) Algebraically, determine how long it will take to decay to 3.125 mg ?
4. A radioactive sample with an initial mass of 72 mg has a half-life of 10 days. 8 marks a) Write a function to relate the amount remaining, A, in milligrams, to the time, t, in days.
b) What amount of the radioactive sample will remain after 20 days?
c) Algebraically determine how long it will take to decay to 9 mg ?
5. Solve the equation $\sqrt[3]{256^{2}} \times 16^{x}=64^{x-3}$. 6 marks
7. An $\$ 8000$ investment is being made for 10 years in to a GIC. Set up a model for each investment below and determine which investment is best. 9 marks
A) 4% compounded semi-annually
B) 3% compounded quarterly
Model:
Model:
Solution:
Solution:

Conclusion:

End:
Exam Date: \qquad

hh

Answer Section

MULTIPLE CHOICE

1. ANS: C

PTS: 1 DIF: Easy
OBJ: Section 7.1
NAT: RF9 TOP: Characteristics of Exponential Functions
KEY: increasing | decreasing
2. ANS: A PTS: 1 DIF: Average OBJ: Section 7.1

NAT: RF9 TOP: Characteristics of Exponential Functions
KEY: equation | graph | exponential function
3. ANS: A PTS: 1 DIF: Average OBJ: Section 7.1

NAT: RF9 TOP: Characteristics of Exponential Functions
KEY: modelling | exponential decay
4. ANS: D PTS: 1 DIF: Easy OBJ: Section 7.2

NAT: RF9 TOP: Transformations of Exponential Functions
KEY: modelling | exponential growth
5. ANS: C PTS: 1 DIF: Average OBJ: Section 7.2

NAT: RF9 TOP: Transformations of Exponential Functions
KEY: modelling | exponential growth
6. ANS: D
PTS: 1
DIF: Easy
OBJ: Section 7.3
NAT: RF10
TOP: Solving Exponential Equations
KEY: compound interest
7. ANS: D PTS: 1 DIF: Average OBJ: Section 7.2
NAT: RF10 TOP: Transformations of Exponential Functions
KEY: modelling | exponential decay
8. ANS: A PTS: 1 DIF: Easy OBJ: Section $7.1 \mid$ Section 7.2

NAT: RF9
TOP: Characteristics of Exponential Functions | Transformations of Exponential Functions
KEY: increasing \mid decreasing | domain | range
9. ANS: A PTS: 1 DIF: Average OBJ: Section 7.2

NAT: RF9 TOP: Transformations of Exponential Functions
KEY: transformations of exponential functions
10. ANS: C
PTS: 1
DIF: Easy
OBJ: Section 7.2

NAT: RF9 TOP: Transformations of Exponential Functions
KEY: transformations of exponential functions
11. ANS: C PTS: 1 DIF: Difficult OBJ: Section 7.2

NAT: RF9 TOP: Transformations of Exponential Functions
KEY: transformations of exponential functions
12. ANS: A PTS: 1 DIF: Average OBJ: Section 7.2

NAT: RF9 TOP: Transformations of Exponential Functions
KEY: transformations of exponential functions
13. ANS: B DTS: 1 DIF: Easy OBJ: Section 7.2

NAT: RF9 TOP: Transformations of Exponential Functions
KEY: transformations of exponential functions
14. ANS: A PTS: 1 DIF: Difficult OBJ: Section 7.1

NAT: RF9 TOP: Characteristics of Exponential Functions
KEY: modelling | exponential function
15. ANS: C

NAT: RF10
16. ANS: D

NAT: RF10
KEY: exponential equation \mid systematic trial
$\begin{array}{lll}\text { 17. ANS: B } & \text { PTS: } 1 & \text { DIF: Average } \\ \text { NAT: RF10 } & \text { TOP: Solving Exponential Equations }\end{array}$
KEY: exponential equation | equate exponents
18. ANS: D

NAT: RF10
PTS: 1
DIF: Difficult
TOP: Solving Exponential Equations

OBJ: Section 7.3
KEY: change of base
OBJ: Section 7.3

OBJ: Section 7.3

OBJ: Section 7.3
KEY: half-life | exponential decay

SHORT ANSWER

1. ANS:
a) i) quadratic
ii) exponential
iii) linear
b) i) successive values would be increasing by a constant amount
ii) successive values would be increasing by a constant factor
iii) all values would be constant

PTS: 1 DIF: Average OBJ: Section 7.1 NAT: RF9
TOP: Characteristics of Exponential Functions
KEY: linear | quadratic | exponential function
2. ANS:
a) ii)
b) iv)
c) i)
d) iii)

PTS: 1 DIF: Easy OBJ: Section 7.1 NAT: RF9
TOP: Characteristics of Exponential Functions
KEY: equation | graph | exponential function
3. ANS:
a) a vertical compression by a factor of $\frac{1}{2}$ and a translation of 2 units to the right
b) The graph of $y=3^{x}$ is shown in blue and the graph of $y=\frac{1}{2}(3)^{x-2}$ is shown in red.

c) domain $\{x \mid x \in \mathrm{R}\}$, range $\{y \mid y>0, y \in \mathrm{R}\}, y=0$

PTS: 1 DIF: Average OBJ: Section 7.2 NAT: RF9
TOP: Transformations of Exponential Functions
KEY: graph | transformations of exponential functions
4. ANS:
a) $y=5^{-x}$
b) $y=5^{x-3}$
c) $y=5^{x+4}-1$
d) $y=-5^{x}-2$

PTS: 1 DIF: Average OBJ: Section 7.2 NAT: RF9
TOP: Transformations of Exponential Functions
KEY: equation | transformations of exponential functions
5. ANS:
$9^{x-1}=\left(\frac{1}{3}\right)^{4 x-1}$
$\left(3^{2}\right)^{n-1}=\left(3^{-1}\right)^{4 n-1}$
$3^{2 n-2}=3^{1-4 n}$
Equate the exponents:
$2 n-2=1-4 n$

$$
6 n=3
$$

$$
n=\frac{1}{2}
$$

PTS: 1
DIF: Average
OBJ: Section 7.3 NAT: RF10
TOP: Solving Exponential Equations KEY: change of base
6. ANS:

$$
\begin{aligned}
& 3^{x}=9^{x^{2}-\frac{1}{2}} \\
& 3^{x}=3^{2\left(x^{2}-\frac{1}{2}\right)}
\end{aligned}
$$

Equate the exponents:
$x=2 x^{2}-1$
$0=2 x^{2}-x-1$
$0=(2 x+1)(x-1)$
$x=-\frac{1}{2}, \quad x=1$
PTS: 1 DIF: Difficult
TOP: Solving Exponential Equations
OBJ: Section 7.3 NAT: RF10
KEY: change of base | equate exponents
7. ANS:

Rewrite the second equation as $y=3 x$ and graph:

The solution is $(1,3)$.
PTS: 1 DIF: Difficult + OBJ: Section 7.3 NAT: RF10 TOP: Solving Exponential Equations

KEY: system of equations | solve by graphing

PROBLEM

1. ANS:
a)

Time, \boldsymbol{t} (weeks)	Population, \boldsymbol{P}
0	50
1	100
2	200
3	400
4	800
5	1600
6	3200
7	6400
8	12

b)

c) The data seem to be exponential, since the graph increases at an increasing rate. The values for population are being multiplied by a factor of 2 between successive terms in the table of values.
d) $P=50(2)^{t}$

PTS: 1 DIF: Average OBJ: Section 7.1 NAT: RF9
TOP: Characteristics of Exponential Functions
KEY: graph | modelling | exponential growth
2. ANS:
a) $V=35000(0.80)^{t}$
b) $V=35000(0.80)^{t}$

$$
\begin{aligned}
& =35000(0.80)^{2} \\
& =22400
\end{aligned}
$$

The value of the vehicle after 2 years is $\$ 22400$.
c) $\quad V=35000(0.80)^{t}$
$3000=35000(0.80)^{t}$
Use systematic trial. When $t=11, V=3006.48$. Therefore, after approximately 11 years, the vehicle will be worth $\$ 3000$.

PTS: 1
DIF: Average
OBJ: Section 7.3 NAT: RF10
TOP: Solving Exponential Equations
KEY: modelling | exponential decay | systematic trial
3. ANS:
a) $A=60\left(\frac{1}{2}\right)^{n}$, where A is the amount of cobalt-60 remaining, in milligrams, and n is the number of half-life periods.
b) 10.6 years equals 2 half-life periods, since $5.3 \times 2=10.6$.

$$
\begin{aligned}
A & =60\left(\frac{1}{2}\right)^{n} \\
& =60\left(\frac{1}{2}\right)^{2} \\
& =\frac{60}{4} \\
& =15
\end{aligned}
$$

15 mg will be present in 10.6 years.
c) $12.5 \%=0.125$

$$
\begin{aligned}
& =\frac{1}{8} \\
\frac{1}{8} & =\left(\frac{1}{2}\right)^{n} \\
\left(\frac{1}{2}\right)^{3} & =\left(\frac{1}{2}\right)^{n} \\
3 & =n
\end{aligned}
$$

It will take 5.3×3, or 15.9 years, for the amount of cobalt- 60 to decay to 12.5% of its initial amount.
PTS: 1 DIF: Difficult OBJ: Section 7.1| Section 7.3
NAT: RF9 | RF10 TOP: Characteristics of Exponential Functions | Solving Exponential Equations KEY: modelling | exponential decay | change of base
4. ANS:
a) $A=6000, i=0.035, n=4$
b) $P=A(1+i)^{-n}$
$=6000(1.035)^{-4}$
≈ 5228.65
Therefore, she needs to invest $\$ 5228.65$.
c) $P=A(1+i)^{-n}$
$=6000(1.04)^{-4}$
≈ 5128.83
Therefore, if the financial institution were to offer 4% annual interest, she would be able to invest approximately $\$ 100$ less to have the same accumulated amount at the end of 4 years.

PTS: 1 DIF: Average
TOP: Solving Exponential Equations
5. ANS:
a) $A=72\left(\frac{1}{2}\right)^{\frac{t}{10}}$

OBJ: Section 7.3 NAT: RF10
KEY: modelling | exponential decay | negative exponents
b) $A=72\left(\frac{1}{2}\right)^{\frac{t}{10}}$

$$
\begin{aligned}
& =72\left(\frac{1}{2}\right)^{\frac{20}{10}} \\
& =72\left(\frac{1}{2}\right)^{2} \\
& =18
\end{aligned}
$$

There will be 18 mg remaining after 20 days.
c) $A=72\left(\frac{1}{2}\right)^{\frac{t}{10}}$

$$
\begin{aligned}
& =72\left(\frac{1}{2}\right)^{\frac{-30}{10}} \\
& =72\left(\frac{1}{2}\right)^{-3} \\
& =576
\end{aligned}
$$

There was 576 mg 30 days ago.
d) $A=72\left(\frac{1}{2}\right)^{\frac{t}{10}}$

$$
0.07=72\left(\frac{1}{2}\right)^{\frac{t}{10}}
$$

$$
\frac{0.07}{72}=\left(\frac{1}{2}\right)^{\frac{t}{10}}
$$

Use systematic trial.
$\frac{0.07}{72} \doteq 0.000972$
For $t=100,\left(\frac{1}{2}\right)^{10} \doteq 0.000977$.
It will take approximately 100 days for there to be 0.07 mg remaining.
PTS: 1
DIF: Average OBJ: Section $7.2 \mid$ Section 7.3
NAT: RF9 | RF10 TOP: Transformations of Exponential Functions | Solving Exponential Equations KEY: modelling |evaluate exponential functions
6. ANS:
a) $y=2^{-2(x-2)}+6$
b) Reflect in the y-axis, compress horizontally by a factor of $\frac{1}{2}$, and translate 2 units to the right and 6 units up.
c)

d) $y=-2^{-2(x-2)}-6$
e)

PTS: 1
DIF: Average
TOP: Exponential Functions

OBJ: Section 7.2 NAT: RF9
KEY: graph | transformations of exponential functions
7. ANS:
$\sqrt[3]{256^{2}} \times 16^{x}=64^{x-3}$

$$
\begin{aligned}
\left(2^{8}\right)^{\frac{2}{3}} \times 2^{4 x} & =2^{6 x-18} \\
2^{4 x+\frac{16}{3}} & =2^{6 x-18} \\
4 x+\frac{16}{3} & =6 x-18 \\
-2 x & =-\frac{70}{3} \\
x & =\frac{35}{3}
\end{aligned}
$$

PTS: 1
DIF: Average
TOP: Solving Exponential Equations

OBJ: Section 7.3 NAT: RF10
KEY: exponential equation | change of base

