Assignment Unit 8 Logarithms May 2020 Name:

\qquad
Multiple Choice
Identify the choice that best completes the statement or answers the question.

1. Which graph represents the inverse of $y=\left(\frac{1}{6}\right)^{x}$?
A.

C.

B.

D.

2. Another way of writing $5^{5}=3125$ is
A. $\log _{5} 5=3125$
B. $\log _{5} 3125=5$
C. $\log _{3125} 5=5$
D. $\log _{5} 5=3125$
3. Which of the following represents $a=\log _{7} 343$?
A. $7^{343}=a$
B. $7^{a}=343$
C. $a^{7}=343$
D. $a^{343}=7$
4. Evaluate $\log _{4} 65536$.
A. 4096
B. 5.33
C. 0.13
D. 8
\qquad 5. The domain of the function $f(x)=8 \log _{6}[8(x+8)]+7$ is
A. $\{x \mid x<7, x \in \mathrm{R}\}$
B. $\{x \mid x<-8, x \in \mathrm{R}\}$
C. $\{x \mid x>7, x \in \mathrm{R}\}$
D. $\{x \mid x>-8, x \in \mathrm{R}\}$
5. Compared to the graph of the base function $y=\log _{7} x$, the graph of the function $y=\log _{7}(x-6)+7$ is translated
A. 6 units to the right and 7 units up
B. 7 units to the left and 6 units down
C. 7 units to the right and 6 units up
D. 6 units to the left and 7 units down
6. Compared to the graph of the base function $f(x)=\log _{9} x$, the graph of the function $g(x)=3 \log _{9}[3(x+6)]-10$ is
A. translated down 10 units and left 6 units, horizontally stretched by a factor of $\frac{1}{3}$, reflected in the y-axis, vertically stretched by a factor of 3 , and reflected in the x-axis
C. translated down 10 units and left 6 units, horizontally stretched by a factor of $\frac{1}{3}$, not reflected in the y-axis, vertically stretched by a factor of 3 , and not reflected in the x -axis
B. translated down 10 units and right 6 units, horizontally stretched by a factor of $\frac{1}{3}$, reflected in the y-axis, vertically stretched by a factor of 3 , and not reflected in the x -axis
D. translated up 10 units and left 6 units,
horizontally stretched by a factor of $\frac{1}{3}$,
not reflected in the y-axis, vertically stretched by a factor of 3 , and not reflected in the x -axis
7. Which function represents a vertical translation of 7 units down, a horizontal translation of 8 units right, a horizontal stretch by a factor of $\frac{1}{6}$, no reflection in the y-axis, a vertical stretch by a factor of 6 , and no reflection in the x -axis, when compared to the base function $f(x)=\log _{9} x$.
A. $g(x)=6 \log _{9}\left[\frac{1}{6}(x-8)\right]-7$
B. $g(x)=\frac{1}{6} \log _{9}[6(x-8)]-7$
C. $g(x)=6 \log _{9}[6(x-7)]-8$
D. $g(x)=6 \log _{9}[6(x-8)]-7$
8. Which graph represents the function $y=\log _{8}(x-2)-4$?
A.

C.

9. What is the equation for the asymptote of the function $f(x)=-\log _{7}[-5(x+2)]-3$?
A. $x=2$
B. $x=-3$
C. $x=-5$
D. $x=-2$
10. Which graph represents the function $y=-3 \log _{3}[(x-2)]-3$?
A.

C.

B.

D.

11. Which of the following is equivalent to the expression $\log _{4} s+7 \log _{4} v+\log _{4} z$? (Workings- 3 marks)
A. $\log _{4} s v^{7} z$
B. $7 \log _{4} \mathrm{svz}$
C. $\log _{4} 7 s v z$
D. $\log _{4} s z+\log _{28} v$
12. If $\log 3=s, \log 5=v$, and $\log 7=z$, an algebraic expression in terms of s, v, and z for $\log \frac{5}{441}$ is (Workings 4 marks)
A. $v-2 s+2 z$
B. $v-2(s+z)$
C. $v-2(s-z)$
D. $v-2 s+z$
13. Which if the following is equivalent to the expression $\log _{4} s w^{10} y$? Workings 3 marks
A. $\log _{4} s+10 \log _{4} w+\log _{4} y$
B. $10 \log _{4} s-10 \log _{4} w+\log _{4} y$
C. $\log _{4} s+\log _{4} w+10 \log _{4} y$
D. $10 \log _{4} s+\log _{4} w+\log _{4} y$
14. The pH scale is used to measure the acidity or alkalinity of a solution. pH is defined as $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$, where $\left[\mathrm{H}^{+}\right]$is the concentration of hydronium ions, measured in moles per litre. Determine the pH of a solution with a concentration of $\left[\mathrm{H}^{+}\right]=4.3 \times 10^{-6}$. Round your answer to two decimal places.
A. 6.00
B. 5.37
C. 0.78
D. 3.52
15. Solve $10^{2 x-5}=7^{x+4}$. Round your answer to two decimal places. (Workings---4 marks)
A. 3.06
B. 7.26
C. 2.95
D. -1.40
16. Solve $\log (3 x+15)=1+\log (x+3)$ to the nearest hundredth. (Workings 4 marks)
A. -6.43
B. 3.46
C. 1.15
D. -2.14

Matching

Match the single logarithm in simplest form with the correct equivalent expression.
A. $\log _{7} s-\log _{7} u+3 \log _{7} x$
B. $8 \log _{7} s-\log _{7} u-3 \log _{7} x$
C. $8 / 3 \log _{7} u-8 \log _{7} s-3 \log _{7} x$
D. $8 / 3 \log _{7} u-8 \log _{7} s+3 \log _{7} x$
E. $8 \log _{7} s-8 / 3 \log _{7} u+3 \log _{7} x$
F. $8 \log _{7} s+8 / 3 \log _{7} u+3 \log _{7} x$

1. $\log _{7} \frac{u^{8 / 3}}{s^{8} x^{3}}$
2. $\log _{7} \frac{s x^{3}}{u}$
3. $\log _{7} \frac{u^{8 / 3} x^{3}}{s^{8}}$
4. $\log _{7} \frac{s^{8} x^{3}}{u^{8 / 3}}$
5. $\log _{7} \frac{s^{8}}{u x^{3}}$

Long Answer

1. Sketch the graph of the function $y=-\log (2 x-6)+1$. Using a mapping rule, domain and range, x-intercept and y-intercepts. PUT IN PRORER FORM FIRST!

2. Graph the function, $y=\log _{3}(-x+1)-2$ using a CORRECT mapping rule. Identify the domain, the range, and the equation of the vertical asymptote.

Base Graph
New Graph Table
10 marks

3.

A certain type of exponential growth can be described by the equation $N=N_{0} 10^{\kappa t}$, where N_{0} is the initial amount; k is the doubling time, in years; and N is the amount after time, t, in years, has passed. Suppose that the population of a small town doubles every 22 years. Algebraically, how long does it take to triple, to the nearest hundredth of a year? 6 marks
4. Solve the equation A) $6^{3 x+1}=2^{2 x-3}$. Leave your answer in exact form as a single logarithm. 7 marks
B) $\quad 4 \cdot 3^{x-1}=10^{-x+2}$

8 marks
5. Solve for x. Be sure to REJECT extraneous solutions. $2 \log _{4}(x+4)-\log _{4}(x+12)=1$

6 marks
6.

Show that $3 \log \sqrt{x}+2 \log x-\frac{1}{2} \log x=3 \log x$.
5 marks
7. A 400-g sample of a radioactive substance is placed in a chamber to be tested. After $3 \mathrm{~h}, 140 \mathrm{~g}$ of the sample remains. Determine the half-life of this substance, to the nearest hundredth of an hour. 7 marks

Model:
8.

PT
9. The half-life of C14 is roughly 5730 years. If a piece of bone is known to contain initially 1050 mg of C14, determine how long it would take for it to decay to 40 mg to the nearest tenth of a year? To 60% of its initial amount? 2 Qs here!

12 marks

Model:

Solution A has a PH of 2.2 while solution B has a PH of 4.8. Determine the hydrogen ion concentration for each solution in $\mathrm{mol} / \mathrm{l}$ and use it to determine how many more times acid is Solution A in comparison to Solution B.

4 marks

Algebraically determine how long in years it would take for a $\$ 2500$ investment to reach $\$ 6000$ if it was

13
A radioactive element has 400 g of the substance initially present. After 8 hours only one eight of the element remains. Algebraically determine the half-life of the element. 6 marks

Model:

The initial cost of a Ford Escape without taxes right now is $\$ 37,500$. It is know the decay at a rate of 20% per year on average. You wish to trade the vehicle in when it is appraised at $\$ 15,000$. Determine algebraically when you will trade the Escape in?

6 marks

Model:

Questions dealing with the number e? 6 marks

Who is the number named after?
What is its approximation to 6 decimal places?
D) Compute $\quad e^{-2} \bullet e \cdot \sqrt[3]{e}$ as an exact value.
14. Simplify as a single logarithm or rational number.

6 marks
А) $\frac{1}{3} \ln 216+2 \ln 3-\ln 6$ B) $\ln 2+4 \ln 8-\frac{1}{2} \ln 64$ Solve for x leaving your answers as an exact value in t

15
A) $\ln (2 x+4)=1$ B)

$$
x+\ln (x-6)=2 \ln (3 \sqrt{2})+\ln 1
$$

