Assignment Unit 8 Logarithms May 2020 Name:_____

Multiple Choice

Identify the choice that best completes the statement or answers the question.

B. translated down 10 units and right 6 units, **D.** translated up 10 units and left 6 units, horizontally stretched by a factor of $\frac{1}{3}$, reflected in the y-axis, vertically stretched by a factor of 3, and not reflected in the x-axis

horizontally stretched by a factor of $\frac{1}{3}$, not reflected in the y-axis, vertically stretched by a factor of 3, and not

reflected in the x-axis

8. Which function represents a vertical translation of 7 units down, a horizontal translation of 8 units right, a horizontal stretch by a factor of $\frac{1}{6}$, no reflection in the y-axis, a vertical stretch by a factor of 6, and no reflection in the x-axis, when compared to the base function $f(x) = \log_0 x$.

A.

$$g(x) = 6\log_{9}\left[\frac{1}{6}(x-8)\right] - 7$$
B.

$$g(x) = \frac{1}{6}\log_{9}\left[6(x-8)\right] - 7$$
C.

$$g(x) = 6\log_{9}\left[6(x-7)\right] - 8$$
D.

$$g(x) = 6\log_{9}\left[6(x-8)\right] - 7$$

9. Which graph represents the function $y = \log_8(x-2) - 4$?

- **10.** What is the equation for the asymptote of the function $f(x) = -\log_7[-5(x+2)] 3?$ **C.** x = -5**D.** x = -2**A.** x = 2**B.** x = -3
- 11. Which graph represents the function $y = -3\log_3[(x-2)] 3$? A.

12. Which of the following is equivalent to the expression $\log_4 s + 7\log_4 v + \log_4 z$? (Workings—3 marks)

- A. $\log_4 s v^7 z$
- **B.** 7log₄*svz*

C. log₄ 7*s*vz
D. log₄ *sz* + log₂₈ v

13. If $\log 3 = s$, $\log 5 = v$, and $\log 7 = z$, an algebraic expression in terms of *s*, *v*, and *z* for $\log \frac{5}{441}$ is (Workings 4 marks)

A. v - 2s + 2zC. v - 2(s - z)B. v - 2(s + z)D. v - 2s + z

14. Which if the following is equivalent to the expression $\log_4 sw^{10}y$? Workings 3 marks **A.** $\log_4 s + 10\log_4 w + \log_4 y$ **B.** $10\log_4 s - 10\log_4 w + \log_4 y$ **C.** $\log_4 s + \log_4 w + 10\log_4 y$ **D.** $10\log_4 s + \log_4 w + \log_4 y$

15. The pH scale is used to measure the acidity or alkalinity of a solution. pH is defined as pH = -log[H+], where [H⁺] is the concentration of hydronium ions, measured in moles per litre. Determine the pH of a solution with a concentration of [H⁺] = 4.3 × 10⁻⁶. Round your answer to two decimal places.
 A. 6.00
 B. 5.37
 C. 0.78
 D. 3.52

16. Solve $10^{2\kappa-5} = 7^{\kappa+4}$. Round your answer to two decimal places. (Workings---4 marks) **A.** 3.06 **B.** 7.26 **D.** -1.40 **17.** Solve $\log(3x + 15) = 1 + \log(x + 3)$ to the nearest hundredth. **A.** -6.43 **B.** 3.46 **C.** 1.15 **D.** -2.14

Matching

Long Answer

_____ 5. $\log_7 \frac{s^8}{ux^3}$

1.Sketch the graph of the function $y = -\log(2x-6)+1$. Using a mapping rule, domain and range, x-intercept and y-intercepts. PUT IN PROPER FORM FIRST! 10 marks

x

(Workings 4 marks)

3.

A certain type of exponential growth can be described by the equation $N = N_0 10^{kt}$, where N_0 is the initial amount; *k* is the doubling time, in years; and *N* is the amount after time, *t*, in years, has passed. Suppose that the population of a small town doubles every 22 years. Algebraically, how long does it take to triple, to the nearest hundredth of a year? 6 marks

Model:

4. Solve the equation A) $6^{3x+1} = 2^{2x-3}$. Leave your answer in exact form as a single logarithm. 7 marks

B) $4 \bullet 3^{x-1} = 10^{-x+2}$

8 marks

5. Solve for x. Be sure to REJECT extraneous solutions. $2\log_4(x+4) - \log_4(x+12) = 1$ 6 marks

6. Show that $3\log \sqrt{x} + 2\log x - \frac{1}{2}\log x = 3\log x$. 5 marks

7. A 400-g sample of a radioactive substance is placed in a chamber to be tested. After 3 h, 140 g of the sample remains. Determine the half-life of this substance, to the nearest hundredth of an hour. 7 marks

Model:

9. The half-life of C14 is roughly 5730 years. If a piece of bone is known to contain initially 1050 mg of C14, determine how long it would take for it to decay to 40 mg to the nearest tenth of a year? To 60% of its initial amount? 2 Qs here! 12 marks

Model:

10 Solve for x: $\log_2(x^2+8) = \log_2 x + \log_2 6$

6 marks

11 Solution A has a PH of 2.2 while solution B has a PH of 4.8. Determine the hydrogen ion concentration for each solution in mol/l and use it to determine how many more times acid is Solution A in comparison to Solution B. 4 marks

12 Algebraically determine how long in years it would take for a\$2500 investment to reach \$6000 if it was invested at 3.5% semi-annually in months and years.

13 A radioactive element has 400 g of the substance initially present. After 8 hours only one eight of the element remains. Algebraically determine the half-life of the element. 6 marks

Model:

14 The initial cost of a Ford Escape without taxes right now is \$37,500. It is know the decay at a rate of 20% per year on average. You wish to trade the vehicle in when it is appraised at \$15,000. Determine algebraically when you will trade the Escape in? 6 marks

Model:

15 Questions dealing with the number e? 6 marks A) Who is the number named after? C) What is its approximation to 6 decimal places? B) Compute e^5 to 4 decimals. D) Compute $e^{-2} \bullet e \bullet \sqrt[3]{e}$ as an exact value.

> 14. Simplify as a single logarithm or rational number. 6 marks A) $\frac{1}{3}\ln 216 + 2\ln 3 - \ln 6$ B) $\ln 2 + 4\ln 8 - \frac{1}{2}\ln 64$ C $\ln 1 - 2\ln e + 3\ln 1 + 6\ln e$ 15 Solve for x leaving your answers as an exact value in terms of e if necessary. 10 marks A) $\ln(2x+4) = 1$ B) $nx + \ln(x-6) = 2\ln(3\sqrt{2}) + \ln 1$

End 2019